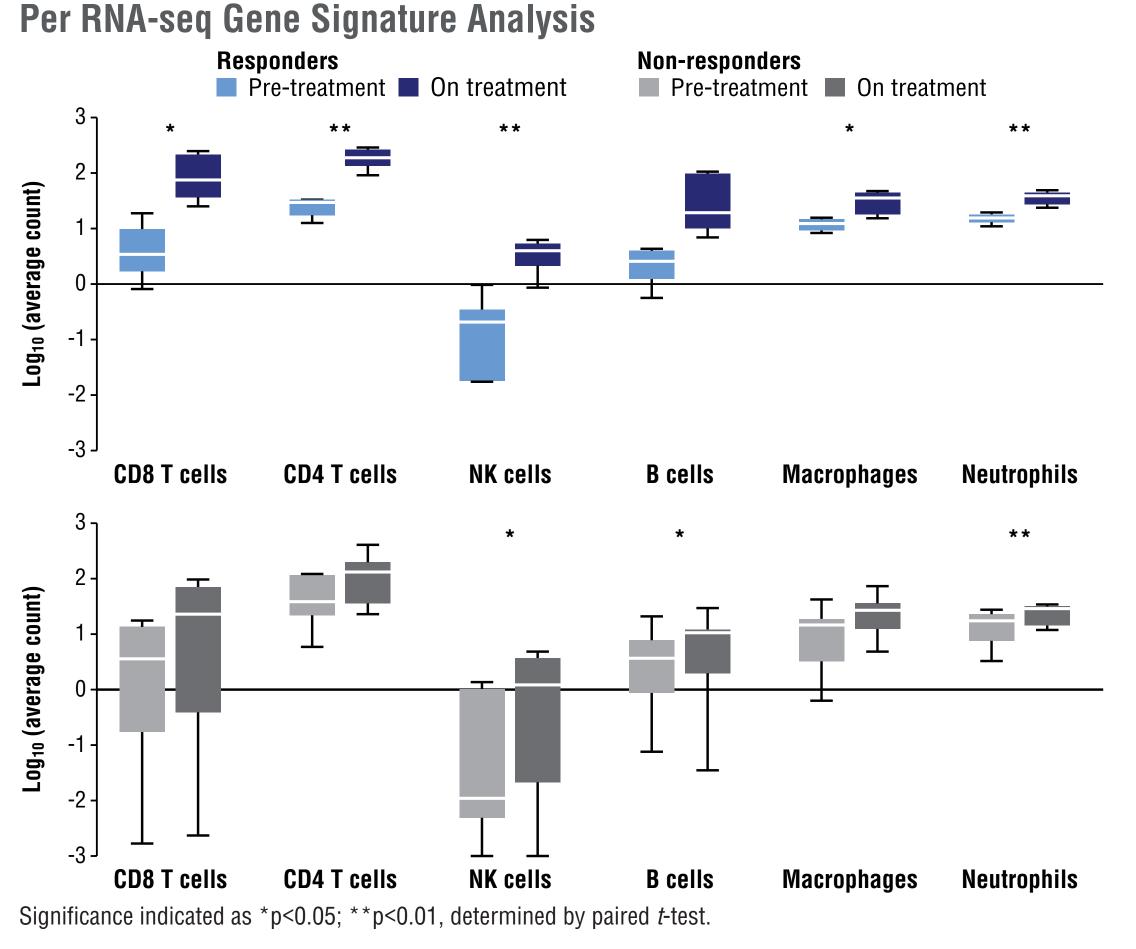
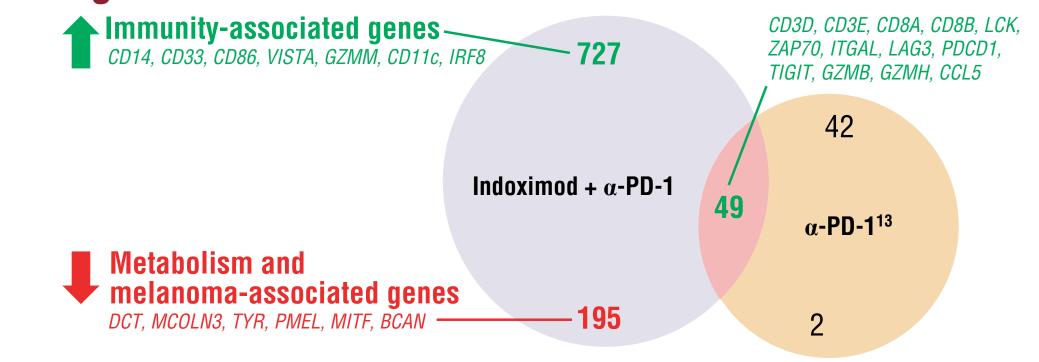
P142

The Immunogenomic Impact of Indoximod on the Tumor Microenvironment of Patients with Advanced Melanoma

Jiayi Yu¹, Gabriela R. Rossi¹, Ravindra Kolhe², David H. Munn², Yousef Zakharia³, Nicholas Vahanian¹, Eugene P. Kennedy¹, Charles Link¹ ¹NewLink Genetics Corporation, Ames, IA; ²Medical College of Georgia, Augusta University, Augusta, GA; ³University of Iowa Hospitals and Clinics, Holden Comprehensive Cancer Center, Iowa City, IA


INTRODUCTION

- The indoleamine 2,3-dioxygenase (IDO) pathway mediates immunosuppressive effects through the metabolism of tryptophan (Trp) into kynurenine (Kyn), triggering downstream signaling through the Trp sensors GCN2 and mTOR as well as through the aryl hydrocarbon receptor (AhR), which senses Kyn¹⁻⁴
- IDO is upregulated in many human tumors and tumor-draining lymph nodes, including melanoma⁵⁻⁹
- Indoximod is an orally administered, small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of low Trp and high Kyn that result from IDO activity¹⁰
- Preclinical and clinical data support evaluating the combination of a checkpoint inhibitor with an IDO pathway inhibitor as potential treatment for advanced melanoma^{10,11}


Indoximod Mechanism of Action

- Indoximod has immunostimulatory effects involving 4 main cell types:
- Reverses the effects of low Trp by increasing proliferation of effector (CD8⁺) T cells
- Directly reprograms Treg into helper T cells
- Downregulates IDO expression in dendritic cells (DCs)

Immune Cell Infiltration Increased From Baseline in Responders

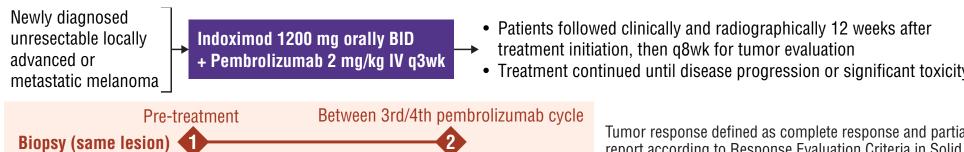
Contribution of Indoximod to Immunologic and Metabolic Changes

seq data compared against published studies¹³ to illustrate shared and unique genes upregulated and downregulated upon treatment with indoximod + anti-PD-1 (purple) or anti-PD-1 (orange). Gene lists with FDR adjusted p-value < 0.05 were compared.

ID01 Expression in Ki67⁻ and Ki67⁺ Cell Populations

Responders Pre-treatment	On treatment	Non-responders Pre-treatment	On treatment
ID01	ID01+Ki	67-	ID01+Ki67+

OBJECTIVES

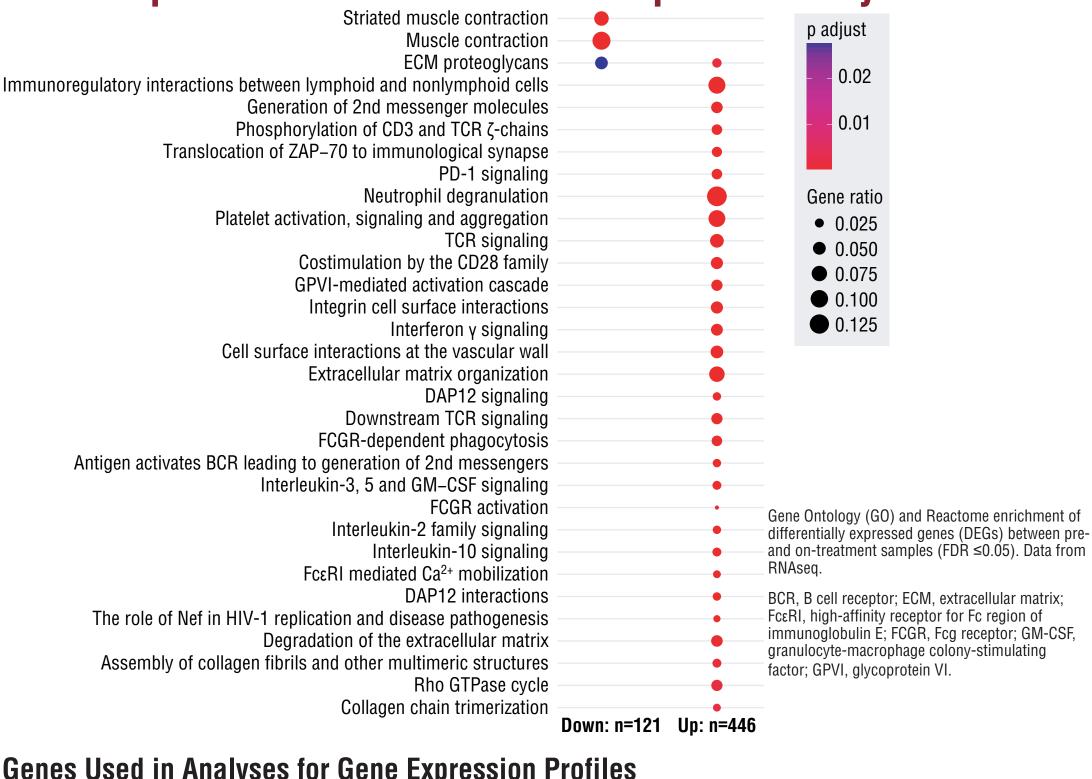


CD8+ T cell

- To determine impact of indoximod + pembrolizumab on the tumor microenvironment (TME)
- To understand the contribution of indoximod in combination treatment
- To examine pharmacodynamic effects of indoximod related to its proposed MOA
- To identify predictive biomarkers for patient stratification in future trials

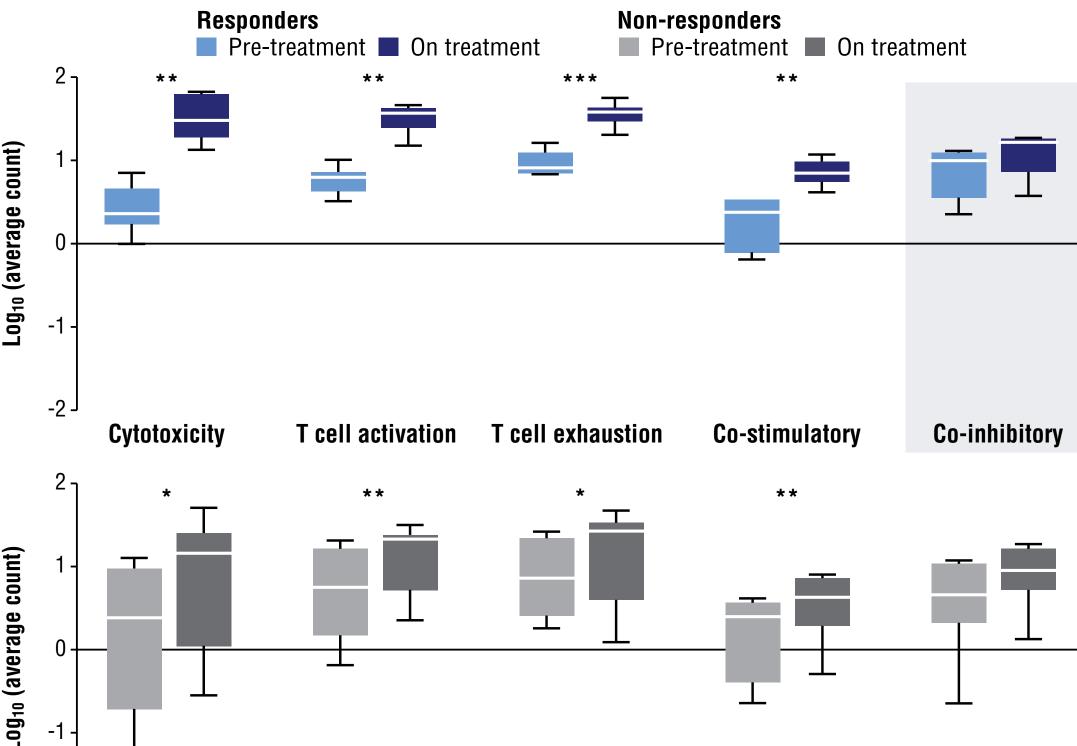
METHODS

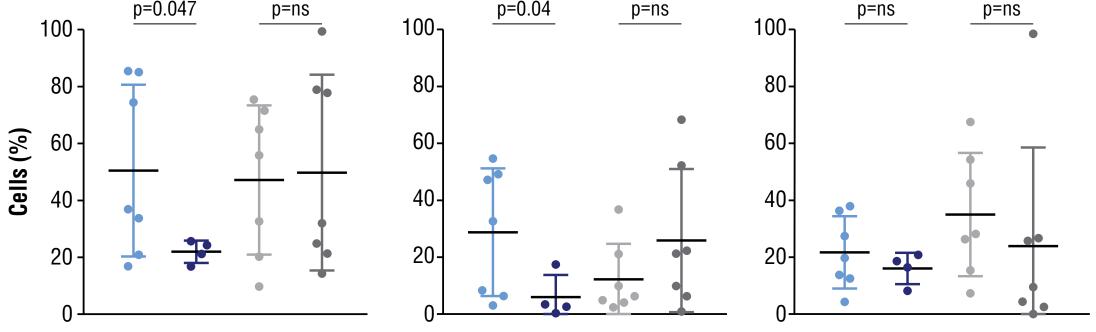
Phase 2, Single-Arm, Open-Label Study (NCT02073123)


report according to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines, version 1.1. PD-L1, programmed death-ligand 1.

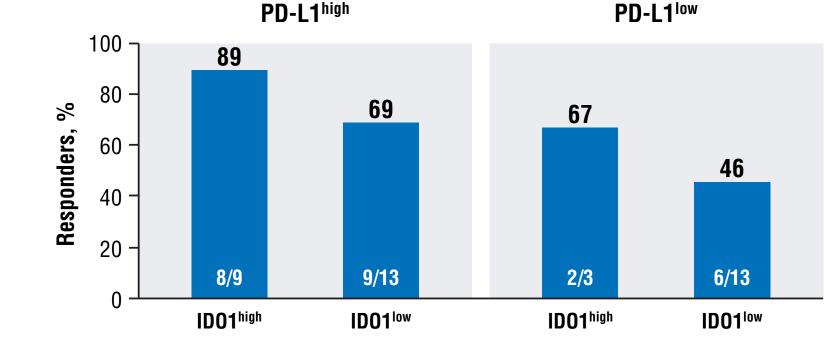
• RNA-seq analysis, multiplex immunofluorescence staining for IDO1 (Millipore, MAB10009), Ki67 (Biocare, CRM325A); PD-L1 expression was determined by immunohistochemistry (IHC) using a validated assay for clone 22C3 as previously described¹²

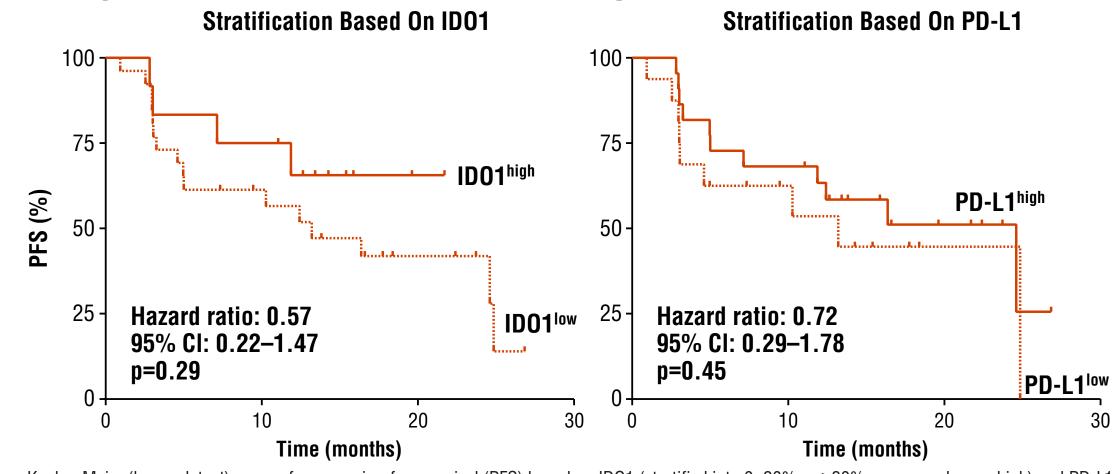
RESULTS


- Patients comprised the efficacy evaluable population (received ≥ 1 study medication dose and ≥ 1 post-baseline response evaluation)
- Samples for immunofluorescence: pre-treatment, n=14; on treatment, n=11
- Samples for RNA sequencing: pre-treatment, n=14; on treatment, n=14
- Samples for PD-L1 and IDO1 staining: pre-treatment only, n=38


Indoximod + Pembrolizumab Modulated Gene **Transcription Associated with Multiple Pathways**

Cell Activity Increased From Baseline in Responders

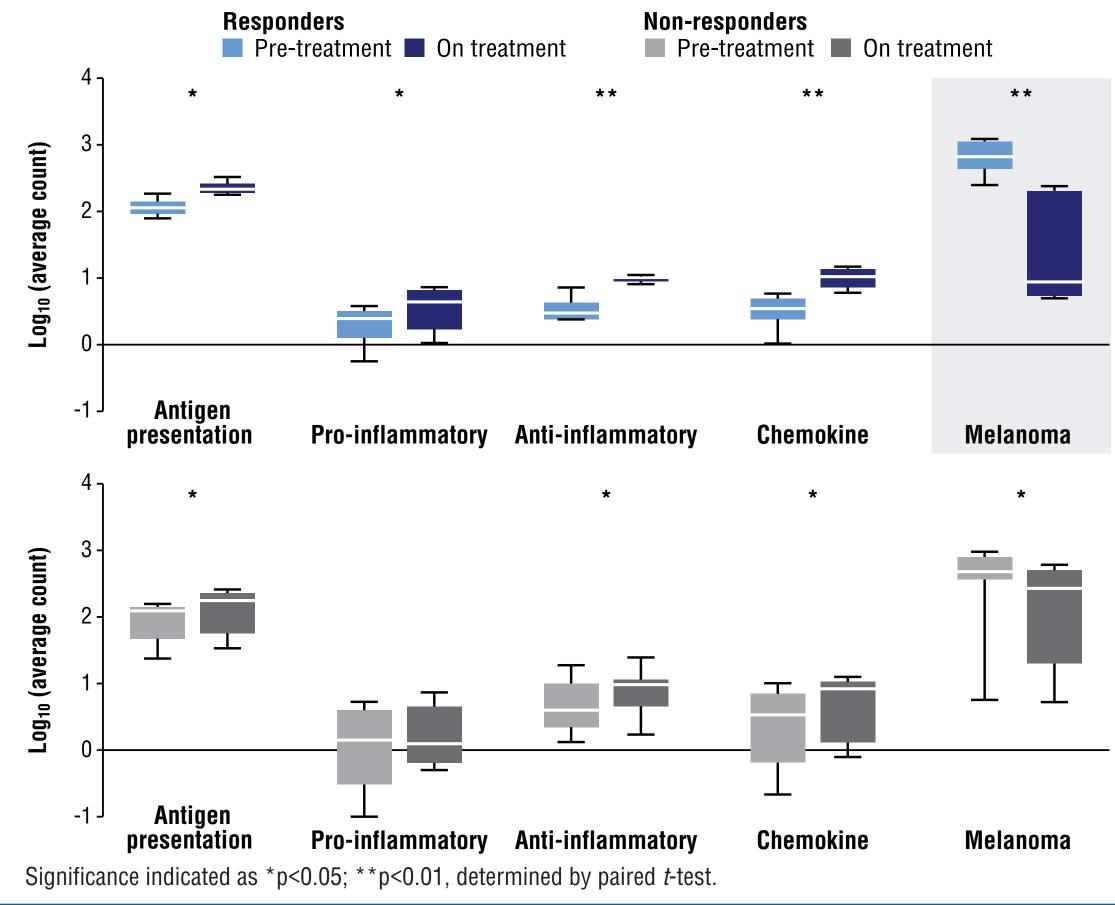

Per RNA-seq Gene Signature Analysis


Percentage of IDO1⁺ cells, IDO1⁺Ki67⁻ cells and IDO1⁺Ki67⁺ cells in pre- and on-treatment biopsies of responders and non-responders using immunofluorescence staining. Welch t tests were used for statistical analyses.

High ID01 Expression Associated With Response

A histogram depicts the proportion of ORR among patients in groups defined by a composite variable of IDO1 (stratified into 0–20% or \geq 20% groups as low vs high) and PD-L1 expression (stratified into 0–1% or \geq 1% groups as low vs high) at baseline. IDO1 measured by immunofluorescence and PD-L1 measured by IHC.

Longer PFS Trend in ID01^{high} Population


Genes Used in Analyses for Gene Expression Profiles

es	CD8 T cells	CD8A, CD8B
typ	CD4 T cells	CD4
nmune c	NK cells	KLRF1, KLRC1, NCR1
	B cell	CD79B, BTLA, FCRL3, BANK1, CD79A, BLK, RALGPS2, FCRL1, HVCN1, BACH2
	Macrophages	FUCA1, MMP9, LGMN, HS3ST2, CLEC5A, GPNMB, C11orf45, CD68, CYBB
	Neutrophils	KDM6B, HSD17B11, EVI2B, MNDA, MEGF9, SELL, NLRP12, TRANK1
	Cytotoxicity	GNLY, CD226, GZMA, GZMB, GZMH, GZMK, GZMM, PRF1, FASLG, LAMP1
	T cell activation	CD247, IL2RA, CD27, CD28, CD44, TREML2, GRB2, PLCG2, PDE4B, LAT, LAT2, NEDD4, CD5, CD6, PDE4C, PDE4D, TNFRSF9, TNFRSF25, TNFRSF18, TNFRSF8, CD226, ZAP70, CD69, ICOS, TNFRSF4, LCP2, SYK, TYROBP, LCK, SLAMF8, CD84, LY9, CD40LG
	T cell exhaustion	ADORA2A, BTLA, CTLA4, LAG3, PDCD1, HAVCR2, TIGIT, PTPN6, CEACAM1, INPPL1, PTPN11, INPP5D, CBL, TIMD4, PTPN3, PTPN22
	Costimulatory	ICOSLG, CD70, TNFSF14, CD40, TNFSF9, TNFSF4, TNFSF15, TNFSF18, TNFSF8, SLAMF1, CD58
	Coinhibitory	PDCD1LG2, CD274, HLA-G, LGALS9, TNFRSF14, CD200, NT5E, ID01, ID02, PVR
	Antigen presentation	PSMB8, PSMB9, PSMB10, HSPA5, CANX, CALR, PDIA3, TAPBP, TAP1, TAP2, HLA-A, HLA-B, HLA-C, B2M, IFNG, IFNGR1, IFNGR2, JAK1, JAK2, STAT1
	Proinflammatory	IL23A, IL6, TNF, IFNG, IL1B, IL15, IL18, IL11, IL7
	Anti-inflammatory	EBI3, TGFB1, TGFB2, IL10
	Chemokine	CCL5, CXCL8, CCR1, CCL3, CCR4, CCR5, CCR7, CCR9, CCR10, CCL28
	Melanoma	MITF, MLANA, PMEL, TYR
Expr	ession scores were cal	culated as the geometric mean of FPKM values.

Cytotoxicity T cell activation T cell exhaustion Co-stimulatory **Co-inhibitorv** Significance indicated as *p<0.05; **p<0.01; ***p<0.001, determined by paired *t*-test.

Expression of Pro-inflammatory Genes Increased and Melanoma-Related Genes Decreased in Responders

Per RNA-seq Gene Signature Analysis

Kaplan-Meier (log-rank test) curve of progression-free survival (PFS) based on IDO1 (stratified into 0–20% or ≥20% groups as low vs high) and PD-L1 expression (stratified into 0–1% or \geq 1% groups as low vs. high) at baseline. ID01 measured by immunofluorescence and PD-L1 measured by IHC.

CONCLUSIONS

- Indoximod + pembrolizumab induced multiple immunologic and metabolic changes in the TME
- Comparison against published studies suggests indoximod combination therapy contributed to immunologic and metabolic changes in a markedly different manner than α -PD-1 alone
- Including gene expression consistent with enhanced cytotoxicity and innate immune cell infiltration and activation (CD14, CD33, CD86, *GZMM, CD11c,* and *IRF8* among others)
- Decreased IDO1 in Ki67⁻ cells, most likely representing decreased ID01 expression in DCs in responders, supports indoximod MOA
- Indoximod-based combination therapy in patients with high baseline IDO1 expression may have a better prognosis

REFERENCES 1. McGaha TL, et al. Immunol Rev. 2012;249:135-57; **2.** Munn DH, et al. Immunity. 2005;22:633-42; **3.** Metz R, et al. Oncoimmunology. 2012;1:1460-8; 4. Opitz CA, et al. Nature. 2011;478:197-203; 5. Uyttenhove C, et al. Nat Med. 2003;9:1269-74; 6. Gerlini G, et al. J Invest Dermatol. 2010;130:898-901; 7. Lee JH, et al. Clin Cancer Res. 2005;11:107-12; 8. Lee JR, et al. Lab Invest. 2003;83:1457-66; 9. Zakharia Y, et al. ASCO 2016, abstr 3075; 10. Brincks EL, et al. AACR 2018 abstr 3753; **11.** Holmgaard RB, et al. J Exp Med. 2013;210:1389-402; **12.** Daud AI, et al. J Clin Oncol. 2016;34:4102-9; **13.** Riaz N, et al. Cell. 2017;171:934–49. **ACKNOWLEDGMENTS** We extend our thanks to the participants. Medical writing and editorial support were provided by BioScience Communications, and were funded by NewLink Genetics Corporation. These studies were funded by NewLink Genetics Corporation.

