Radio-chemo-immunotherapy using the IDO-inhibitor indoximod for children with progressive brain tumors in the phase 1 setting (NCT02502708)

Theodore S. Johnson, M.D., Ph.D.

Pediatric Immunotherapy Program Medical College of Georgia (MCG) Georgia Cancer Center Augusta University

Disclosures

- Theodore S. Johnson, M.D., Ph.D.
 - NewLink Genetics Corporation is partially funding a pediatric clinical trial which will be discussed
 - The presenter receives no direct financial support from NewLink Genetics Corporation
 - No other relevant financial relationships exist with respect to this presentation
 - Off-label use of chemotherapy drugs will be discussed for pediatric patients

Can combined radio-chemo-immunotherapy improve efficacy with lower toxicity?

- Pediatric brain tumors are ~70% curable
- In the relapse setting, conventional therapy is either not effective, or works for some cases but is too toxic
 - Relapsed glioblastoma
 - Radiation unclear benefit
 - Chemotherapy does not work
 - Relapsed medulloblastoma
 - Many patients have already failed tandem autologous transplant
 - Relapsed ependymoma
 - Full dose radiation works but too toxic for 80% of cases
 - Lower dose radiation doesn't work
 - Chemotherapy doesn't work

Hypothesis

Radio-immunotherapy using IDO-blockade may act as a one-time endogenous vaccine to activate native immunity

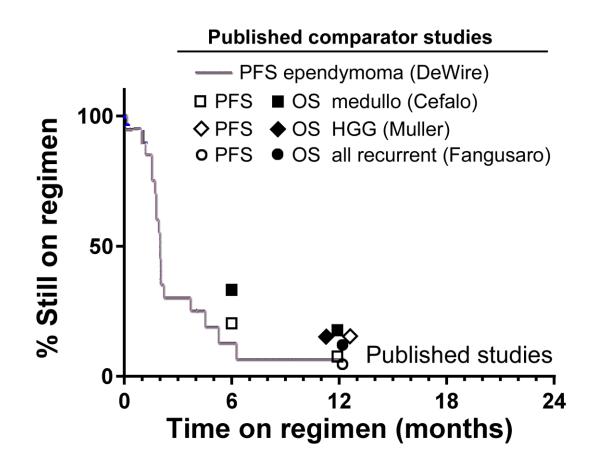
... but must be followed by

<u>Cyclic chemo-immunotherapy</u> to achieve sustained responses and late responses.

Resulting anti-tumor immunity may allow less intense conventional therapy to be effective.

Phase I trial schema (NCT02502708)

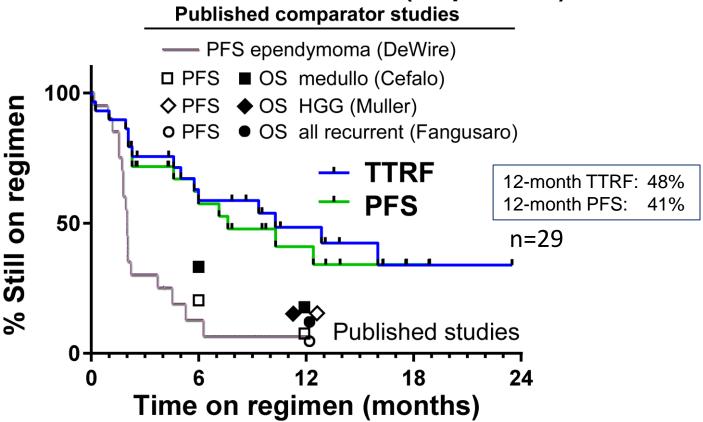
Relapsed or refractory brain tumor patients age 3-21 years of age


- Group 1: "Core Regimen" indoximod (dose-escalation) with temozolomide
 - Indoximod (study dose, PO, twice daily on days 1-28)
 - PK analysis
 - Temozolomide (200 mg/m²/day, PO, daily on days 1-5)
- Group 2: Expansion cohorts using the "Core Regimen" Open
 - Indoximod (RP2D = 19.2 mg/kg/dose, PO, twice daily on days 1-28)
 - Temozolomide (200 mg/m²/day, PO, daily on days 1-5)
- Group 3: Up-front cycle of indoximod (dose-escalation) plus radiation therapy
 - Indoximod (study dose, PO, twice daily)
 - Individualized radiation plan
 - Followed by the "Core Regimen" as maintenance therapy

Radiographic evidence of progression (escape lesions) can be managed with continued indoximod and:

- Surgical resection (regain local control)
- Targeted radiation (regain local control)
- Cross-over to 2nd-line chemo (cyclophosphamide/etoposide)

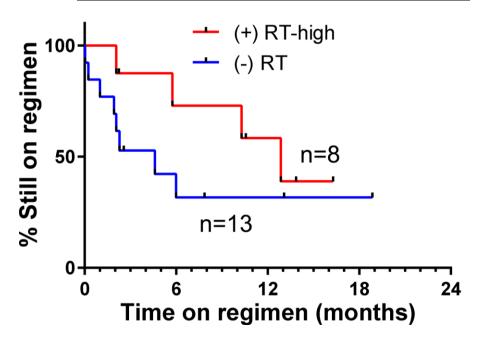
Historical control data for relapsed brain tumors


Historical controls adapted from:

DeWire M, et al. 2015. J Neurooncology. 123:85. Cefalo G, et al. 2014. Neuro-oncology. 16:748. Muller K, et al. 2014. Radiation Oncology. 9:177. Fangusaro JR, et al. 2017. J Clin Oncol. 35(suppl): abstract 10543.

Favorable outcome with indoximod-based therapy

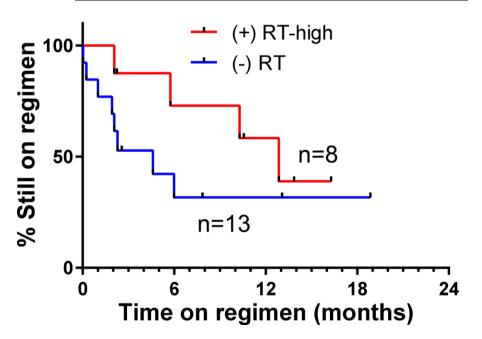
Historical controls adapted from:


DeWire M, et al. 2015. J Neurooncology. 123:85. Cefalo G, et al. 2014. Neuro-oncology. 16:748. Muller K, et al. 2014. Radiation Oncology. 9:177.

TTRF, Time To Regimen Failure; PFS is not yet centrally reviewed

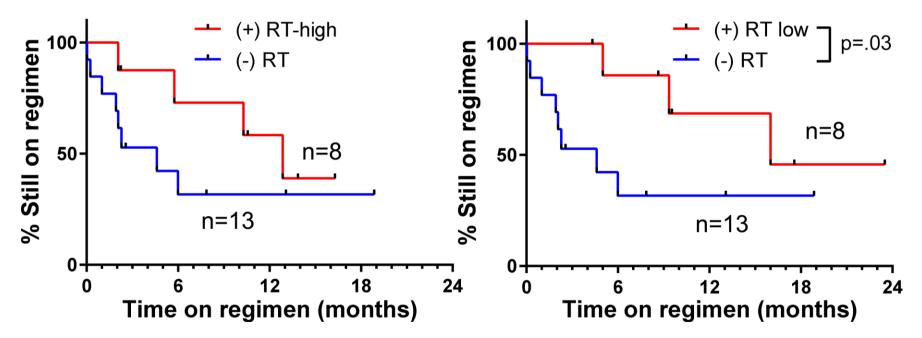
Fangusaro JR, et al. 2017. J Clin Oncol. 35(suppl): abstract 10543.

Radio-immunotherapy improves time to regimen failure (TTRF)


	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	

Radio-immunotherapy improves time to regimen failure (TTRF)

	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	


Hypothesis: Radio-immunotherapy followed by cyclic chemo-immunotherapy may act as an endogenous vaccine to achieve anti-tumor immunity and allow less intense conventional therapy to be effective.

Radio-immunotherapy improves time to regimen failure (TTRF)

	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	

	Low-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	16 months	4.6 months
RT dose	<u><</u> 30 Gy	
Median target vol.	108 cm3	
RT to all tumors	2/8 (25%)	

Hypothesis: <u>Radio-immunotherapy</u> followed by <u>cyclic chemo-immunotherapy</u> may act as an endogenous vaccine to achieve anti-tumor immunity and <u>allow less intense conventional therapy to be effective</u>.

Serious adverse events

15 patients (52%) experienced 21 SAE's

	Grade (n)				Relationship to Indoximod				
Event	1	2	3	4	Unrelated	Unlikely	Possible	Likely	Related
Fever	1	1			1	1			
Febrile neutropenia			1			1			
Lung infection			1			1			
Urinary tract infection		1					1		
Wound infection			1		1				
Anaphylaxis (blood product)			1		1				
Hydrocephalus			1	1	1	1			
Muscle weakness		1	2		2	1			
Seizure		1			1				
Hemiparesis*			1				1		
Spinal cord compression*			1				1		
Encephalopathy*				1	1				
Vomiting		1	2		1	2			
Hyponatremia				1		1			
Adrenal insufficiency	-			1		1			
	· · · · · · · · · · · · · · · · · · ·								

*resolved

Conclusion and future directions

- First empiric evidence that adding immunotherapy may have a significant dose-sparing effect on highly toxic conventional therapy
- Continue to enroll expansion cohorts (3-4 per month)
- Move to front-line therapy for DIPG (2 patients enrolled)
- Phase 2 trial to formally test the radiation dose-sparing hypothesis (planned for 2018 / 2019)
 - Plan radio-immunotherapy using IDO-blockade for all enrolled patients (unless contraindicated)
 - Test the hypothesis that low-dose radiation plans (≤ 30 Gy) will be efficacious when combined with IDO-blockade
 - Currently only 20%-25% would qualify for re-irradiation, and at much higher doses

Acknowledgements

Augusta University

- David H. Munn
- William Martin
- Ahmad Al-Basheer
- Waleed F. Mourad
- Diana Fridlyand
- Rafal Pacholczyk
- Cole A. Giller
- Rebecca Parker
- Ian M. Heger
- Amyn M. Rojiani
- Ravindra B. Kolhe Ramses F. Sadek

Emory University

- Tobey J. MacDonald Bree R. Eaton

Dolly Aguilera

Natia Esiashvili

NewLink Genetics Corp.

- Gene Kennedy
- Amy Bell

Nick Vahanian

- Chris Smith
- Lucy Tenant

Grant Support

- Alex's Lemonade Stand Foundation
- Cannonball Kids' cancer Foundation
- Hyundai Hope on Wheels Foundation
- Press On Foundation / CAM Fund

Collaborators

MD Anderson Cancer Center

David Grosshans

Univ. of Alabama at Birmingham

- Gregory K. Friedman
- John B. Fiveash

Akron Children's Hospital

Michael Kelly

Medical College of Wisconsin

- Selim Firat
- Jeffrey Knipstein

Children's Hospital Colorado

- Nicholas Foreman
- Arthur Liu

Child's Hosp. King's Daughters

Raven M. Cooksey

Hampton Univ. Proton Therapy Inst.

Allan Thornton

