NLG-0301: An Open-label, Randomized Phase 2b Active Control Study of Second-line Tergenpumatucel-L Immunotherapy versus Docetaxel in Patients with Progressive or Relapsed Non-small Cell Lung Cancer (NSCLC)

Ramaswamy Govindan¹, John Charles Morris², Gabriela R. Rossi³, Nicholas N. Vahanian³, Charles J. Link³

¹Division of Oncology, Washington University School of Medicine, St. Louis, MO; ²University of Cincinnati, Cincinnati, OH; ³NewLink Genetics, Ames, IA TPS8133

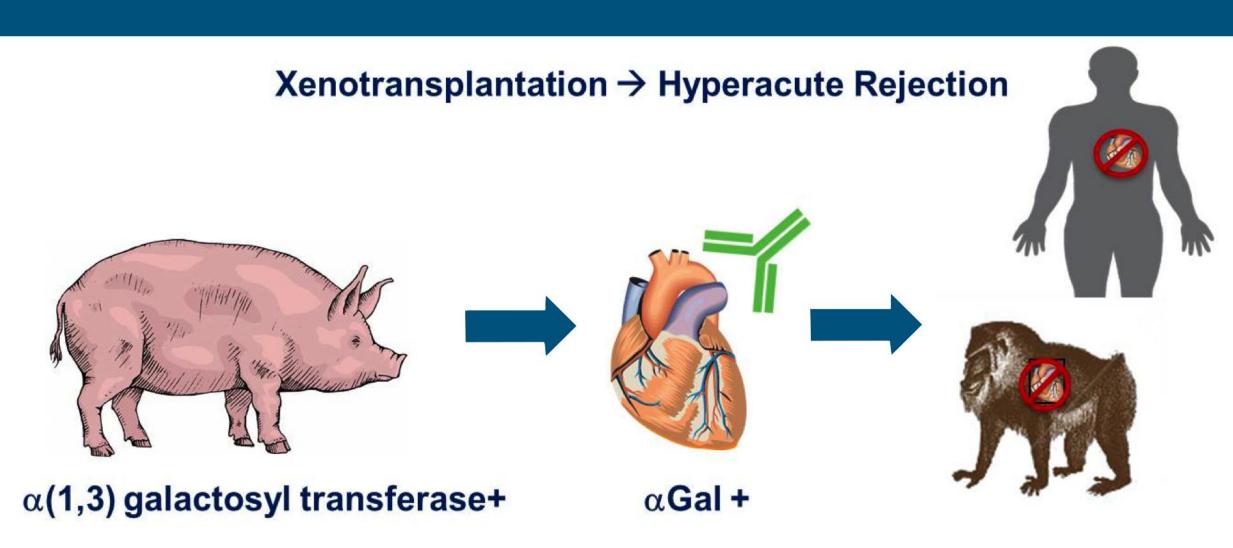
INTRODUCTION

Tergenpumatucel-L immunotherapy (HyperAcute™ Lung) consists of allogeneic (non-patient source) lung cancer cells that have been genetically modified to express the carbohydrate $\alpha(1,3)$ Gal, to which humans have an inherent pre-existing immunity.

αGal is primarily responsible for the hyperacute rejection of foreign tissue that comprises a potent immune defense mechanism in humans. Tergenpumatucel-L leverages this mechanism of hyperacute rejection to educate the immune system towards components of the patients' own tumor cells.

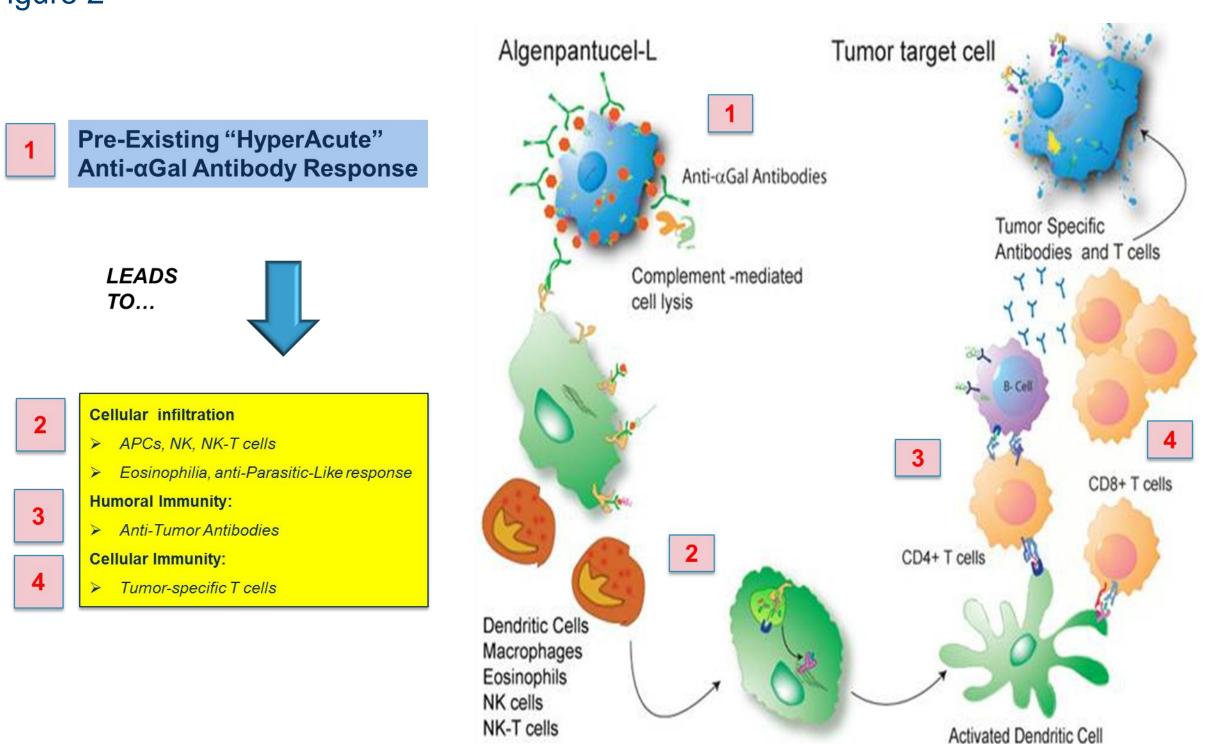
In a Phase 2 study of tergenpumatucel-L, patients showed:

- Evidence of immune activation after therapy (11/18 patients with elevated IFN gamma via ELISPOT)
- Median survival of 21.9 months
- 16 of 28 patients went on to salvage therapy after progression and 9 of these 16 had objective responses (5PR, 4SD) to the post immunotherapy chemotherapy


This phase 2b study is designed to further evaluate the potential chemo-sensitization effect of tergenpumatucel-L.

HYPERACUTE REJECTION

Figure 1


Anti-αGal antibodies in primates are responsible for hyperacute rejection of xenotransplants

- The α(1,3)galactosyltransferase (αGT) gene is expressed by lower mammals, but not in humans or other Old World primates [1,2]
- Humans naturally acquire anti-αGal antibodies to levels that can reach 1% of total circulating antibodies [1,2]
- Anti-αGal antibodies responsible for HyperAcute rejection of xenotransplants (Fig. 1) [2]
- Animal models demonstrate efficacy in treating tumors when αGal expressing cells are utilized [3,4,5]

MECHANISM OF ACTION

Figure 2

CHEMO-SENSITIZATION

- In the phase 2 study, all patients received 300 million cells per injection every 2 weeks for eight scheduled doses
- Figure 3 shows examples of a potential chemo-sensitization effect

Figure 3

NLG0101 P36

Nov. 2009 Feb, 2010

Patient 036 received subsequent chemotherapy and had a durable partial response. Patient survived 3 years after initial progression in the trial.

NLG0101 P41

Feb, 2010

June, 2009

Patient 041 received subsequent chemotherapy and experienced rapid partial response. Patient survived 16 months after initial progression in the trial

STUDY OVERVIEW

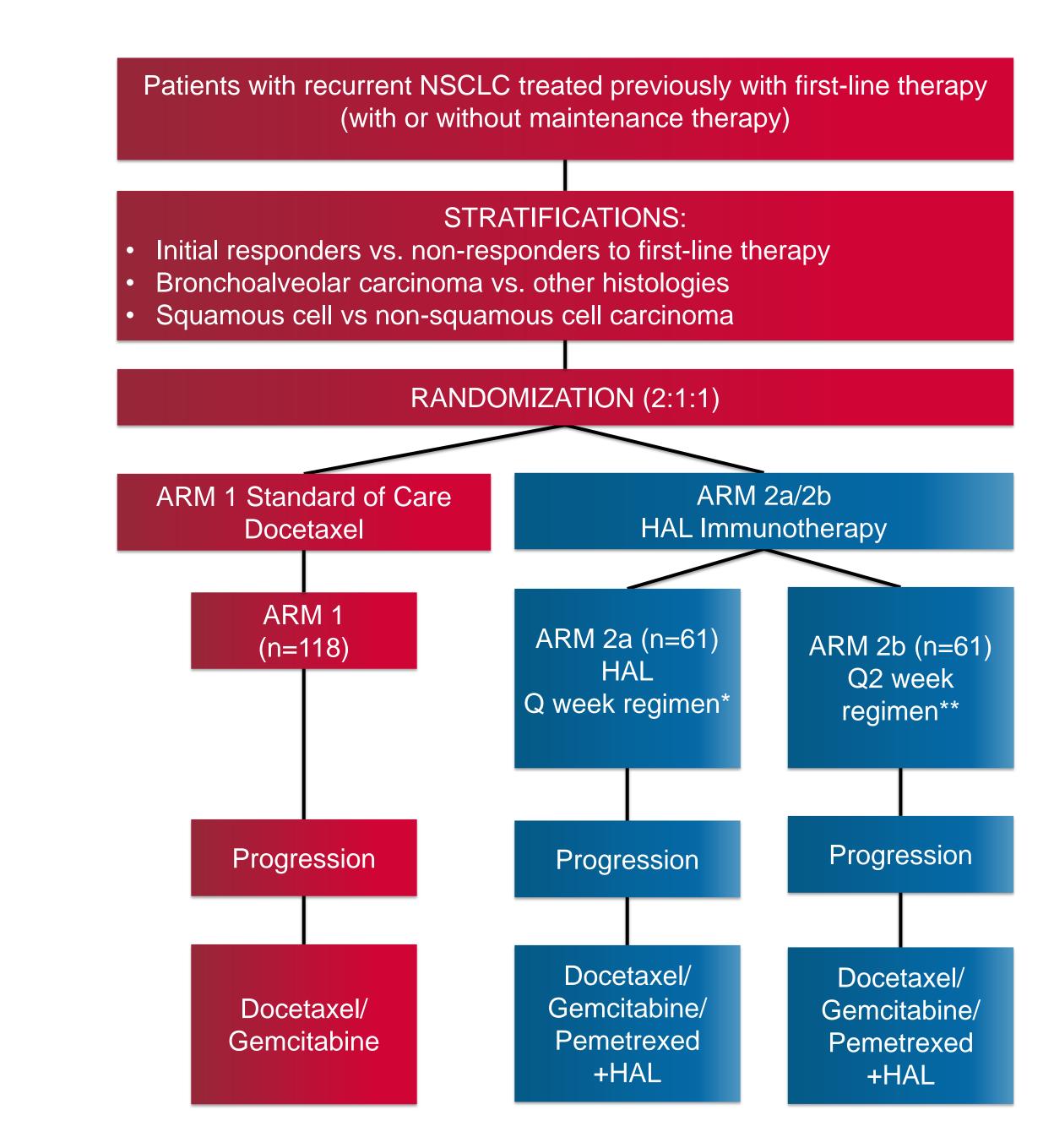
This Phase 2b study is an open label, multi center randomized trial of single agent tergenpumatucel-L versus docetaxel in patients with progressed or relapsed NSCLC that have been previously treated.

Eligibility

- Pathologically confirmed NSCLC (adenocarcinoma, bronchoalveolar carcinoma, large cell anaplastic carcinoma and squamous cell carcinoma)
- Stage IIIB/IV, recurrent or treatment refractory disease.
- Prior therapy may include surgery, radiation, and/or ≤ 2 prior chemotherapy regimens excluding docetaxel. EGFR inhibitors or monoclonal antibodies are included as chemotherapy.
- Patients must have a granulocyte count of ≥1000/μL, platelets ≥100,000/μL, hemoglobin ≥10.0 gm/dL, albumin ≥3.0 gm/dL and acceptable hepatic and renal function.

Study Design

- 240 patients randomized 2:1:1 to the following groups:
- Arm 1: Docetaxel 75mg/m² q3 weeks x 4 doses
- Arm 2a: Tergenpumatucel-L 300 million cells intradermally weekly for 11 weeks and then q2 months for 5 additional doses
- Arm 2b: Tergenpumatucel-L 300 million cells q2 weeks for 6 doses and then monthly for 10 months


Continuation

- With first progression, subjects stay on study and receive:
- Arm 1: gemcitabine 1250 mg/m²/week for 2 weeks with 1 week rest or pemetrexed 500 mg/m² every 3 weeks until disease progression or significant toxicity
- Arm 2a/2b: docetaxel 75 mg/m² I.V. given every 3 weeks or gemcitabine 1250 mg/m²/week for 2 weeks with 1 week rest or pemetrexed 500 mg/m² every 3 weeks until disease progression or significant toxicity and continue with HAL administration given every 2 weeks (not to exceed 16 total immunizations)

Study Obectives

- Overall survival
- Overall objective tumor response rate with study drug
- Immunologic correlates

STUDY SCHEMA

*Receive HAL once a week initially and every 2 weeks during salvage regimens for a maximum of 16 doses

** Receive HAL q 2 weeks intially and during salvage regimens for a maximum of 16 doses

SUMMARY

- Evidence of chemo-sensitivation by Tergenpumatucel-L was shown in a prior phase 2 study
 - 11.3 month median survival compared to current standard of care of ~8mo
 - Well tolerated, no drug related grade 4 events reported
 - 31% response rate in patients receiving subsequent chemotherapy after progressing on tergenpumatucel-L
 - An additional 25% of patients achieved SD
- This phase 2b study further explores the potential chemo-sensitization effect of tergenpumatucel-L in progressed or relapsed NSCLC patients by comparing 2 different dosing regimens of tergenpumatucel-L to single agent docetaxel

REFERENCES

- 1. Link et al., Adv Exp Med Biology, 2000, 465: 217-227
- 2. Galili et al., Transplantation 1995, 60(2): 210-3
- 3. Rossi et al., Cancer Imm Immunotherapy, 2005, 54:999-1009
- 4. Rossi et al., Cancer Res, 2005, 65(22):10555-61
- 5. Rossi et al., J Immunotherapy, 2008, 31(6):545-54
- 6. Morris et al., ASCO 2013, Abstract #8094

CLINICAL TRIALS IDENTIFIER

Clinicaltrials.gov identifier NCT01774578

