Radio-chemo-immunotherapy using the IDO-inhibitor indoximod for childhood brain cancer (NCT02502708)

Theodore S. Johnson, M.D., Ph.D.

Pediatric Immunotherapy Program Medical College of Georgia (MCG) Georgia Cancer Center Augusta University

Disclosures

- Theodore S. Johnson, M.D., Ph.D.
 - NewLink Genetics Corporation is partially funding a pediatric clinical trial which will be discussed
 - The presenter receives no direct financial support from NewLink Genetics Corporation
 - No other relevant financial relationships exist with respect to this presentation
 - Off-label use of chemotherapy drugs will be discussed for pediatric patients

Can combined radio-chemo-immunotherapy improve efficacy with lower toxicity?

- Pediatric brain tumors are ~70% curable
- In the relapse setting, conventional therapy is either not effective, or works for some cases but is too toxic
 - Relapsed glioblastoma
 - Radiation unclear benefit
 - Chemotherapy does not work
 - Relapsed medulloblastoma
 - Many patients have already failed tandem autologous transplant
 - Relapsed ependymoma
 - Full dose radiation works but too toxic for 80% of cases
 - Lower dose radiation doesn't work
 - Chemotherapy doesn't work

Hypothesis

Radio-immunotherapy using IDO-blockade may act as a one-time endogenous vaccine to activate native immunity

... but must be followed by

Cyclic chemo-immunotherapy to achieve sustained responses and late responses.

Resulting anti-tumor immunity may allow less intense conventional therapy to be effective.

Phase I trial schema (NCT02502708)

Relapsed or refractory brain tumor patients age 3-21 years of age

Group 1: "Core Regimen"

- Indoximod (study dose, PO, twice daily on days 1-28)
 - Dose-escalation
 - PK analysis
- Temozolomide (200 mg/m²/day, PO, daily on days 1-5)
- 28-day cycles

<u>Indoximod dose-levels</u>:

- 80% of adult RP2D (25.6 mg/kg/day divided BID)
- 100% of adult RP2D (32 mg/kg/day divided BID)
- 120% of adult RP2D (38.4 mg/kg/day divided BID)

Phase I trial schema (NCT02502708)

Relapsed or refractory brain tumor patients age 3-21 years of age

Group 1: "Core Regimen"

- Indoximod (study dose, PO, twice daily on days 1-28)
 - Dose-escalation
 - PK analysis
- Temozolomide (200 mg/m²/day, PO, daily on days 1-5)
- 28-day cycles

Group 3: Up-front Radiation therapy with indoximod

- Indoximod (study dose, PO, twice daily)
 - Dose-escalation
- Individualized radiation plan
- Followed by the "Core Regimen" as maintenance therapy

<u>Indoximod dose-levels</u>:

- 80% of adult RP2D (25.6 mg/kg/day divided BID)
- 100% of adult RP2D (32 mg/kg/day divided BID)
- 120% of adult RP2D (38.4 mg/kg/day divided BID)

Phase I trial schema (NCT02502708)

Relapsed or refractory brain tumor patients age 3-21 years of age

Group 1: "Core Regimen"

- Indoximod (study dose, PO, twice daily on days 1-28)
 - Dose-escalation
 - PK analysis
- Temozolomide (200 mg/m²/day, PO, daily on days 1-5)
- 28-day cycles

Group 3: Up-front Radiation therapy with indoximod

- Indoximod (study dose, PO, twice daily)
 - Dose-escalation
- Individualized radiation plan
- Followed by the "Core Regimen" as maintenance therapy

Radiographic evidence of progression (escape lesions) can be managed with continued indoximod and:

- Surgical resection (regain local control)
- Targeted radiation (regain local control)
- Cross-over to 2nd-line chemo (cyclophosphamide/etoposide)

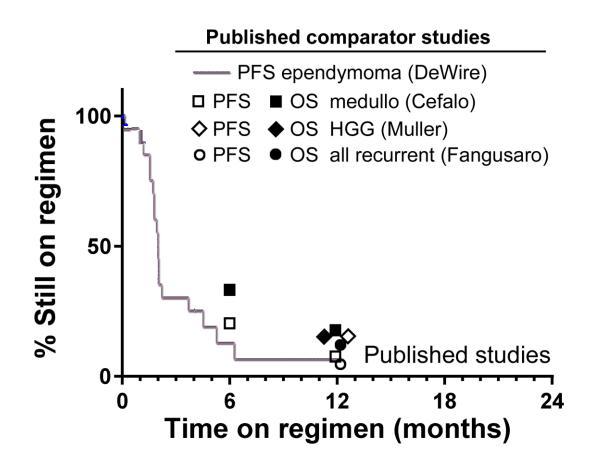
Phase I trial of indoximod in combination with temozolomide-based therapy for children with progressive primary brain tumors (NCT02502708 / NLG2105)

Relapsed or refractory brain tumor patients age 3-21 years of age

- Group 2: Indoximod (RP2D) plus temozolomide "Core Regimen" (expansion cohorts) (**Open**, using indoximod at DL3)
 - Group 2a: High-grade glioma
 - Group 2b: Ependymoma
 - Group 2c: Medulloblastoma
 - Group 2d: Other histology
 - *Group 2e: Newly diagnosed DIPG (upfront radiation/indoximod)
 - Opens after a 6-patient pilot cohort enrolls in Group 3

Group 4: Cross-over Arm (Open)

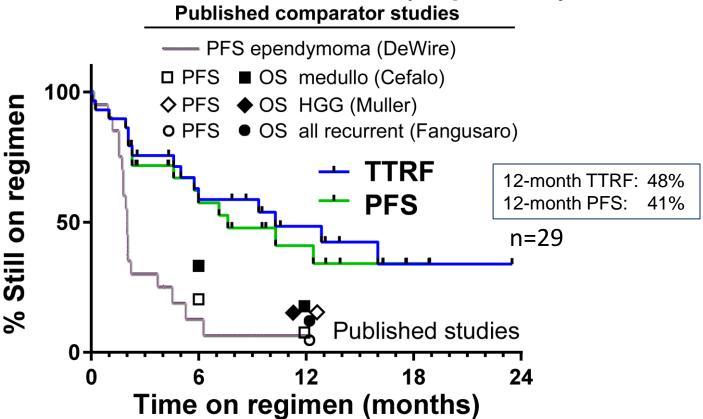
- Indoximod (PO, twice daily on days 1-28)
- Cyclophosphamide (2.5 mg/kg/dose, PO, daily on days 1-21)
- Etoposide (PO, daily on days 1-21)
- 28-day cycles


Patient demographics (dose-escalations)

Total patients enrolled, n	29
Gender, n (%)	
Female	10 (34)
Male	19 (66)
Race, n (%)	
African American	3 (10)
Caucasian	23 (79)
Hispanic	0 (0)
Other	2 (7)
Declined to provide	1 (3)
Age, years	
Median	12.5
Range	(3 - 20)
Diagnosis, n (%)	
Ependymoma	14 (48)
Malignant glioma*	9 (31)
Medulloblastoma**	6 (21)

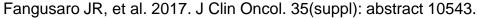
^{*} includes one each gliosarcoma, bithalamic glioma, ganglioglioma

Historical control data for relapsed brain tumors

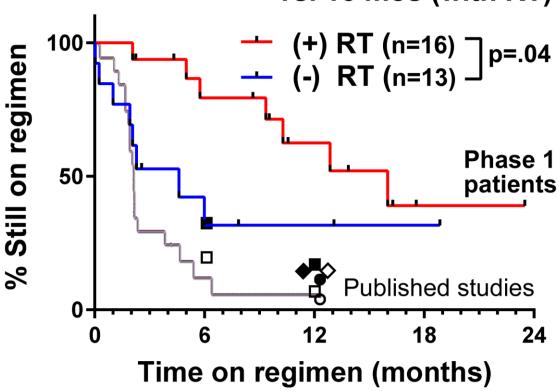

Historical controls adapted from:

DeWire M, et al. 2015. J Neurooncology. 123:85. Cefalo G, et al. 2014. Neuro-oncology. 16:748. Muller K, et al. 2014. Radiation Oncology. 9:177. Fangusaro JR, et al. 2017. J Clin Oncol. 35(suppl): abstract 10543.

Favorable outcome with indoximod-based therapy

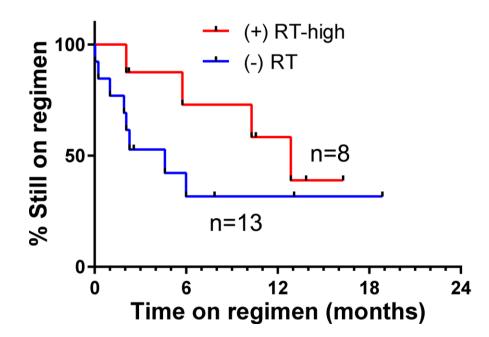


Historical controls adapted from:

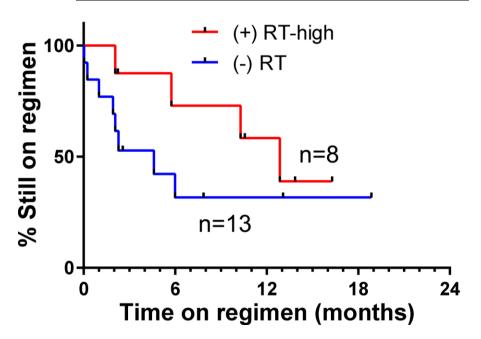

DeWire M, et al. 2015. J Neurooncology. 123:85. Cefalo G, et al. 2014. Neuro-oncology. 16:748. Muller K, et al. 2014. Radiation Oncology. 9:177.

TTRF, Time To Regimen Failure; PFS is not yet centrally reviewed

Median TTRF = 4.6 mos (without RT) vs. 16 mos (with RT)

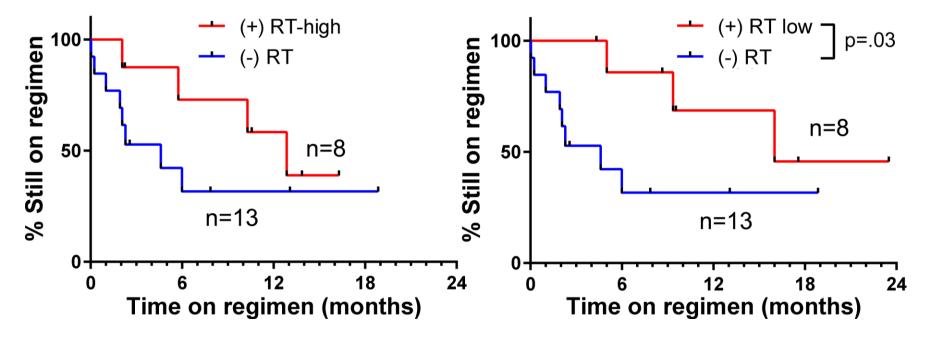


Historical controls adapted from:


DeWire M, et al. 2015. J Neurooncology. 123:85. Cefalo G, et al. 2014. Neuro-oncology. 16:748. Muller K, et al. 2014. Radiation Oncology. 9:177. Fangusaro JR, et al. 2017. J Clin Oncol. 35(suppl): abstract 10543.

	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	

	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	



Hypothesis: <u>Radio-immunotherapy</u> followed by <u>cyclic chemo-immunotherapy</u> may act as an endogenous vaccine to achieve anti-tumor immunity and <u>allow less intense conventional therapy to be effective</u>.

	High-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	13 months	4.6 months
RT dose	<u>></u> 50 Gy	
Median target vol.	165 cm3	
RT to all tumors	6/8 (75%)	

	Low-dose RT (n=8)	vs. No RT (n=13)
Median TTRF	16 months	4.6 months
RT dose	<u><</u> 30 Gy	
Median target vol.	108 cm3	
RT to all tumors	2/8 (25%)	

Hypothesis: <u>Radio-immunotherapy</u> followed by <u>cyclic chemo-immunotherapy</u> may act as an endogenous vaccine to achieve anti-tumor immunity and <u>allow less intense conventional therapy to be effective</u>.

Conclusion

 First empiric evidence that adding immunotherapy may have a significant dose-sparing effect on highly toxic conventional therapy

Patterns of response to immunotherapy

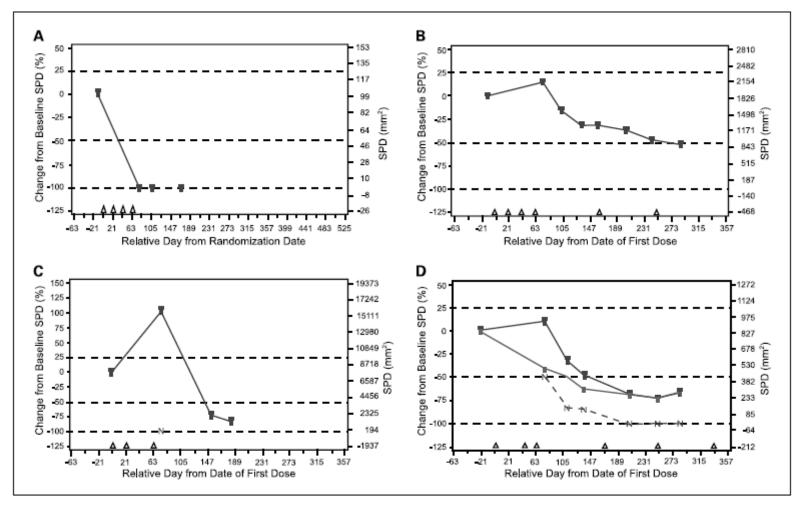


Fig. 1. Patterns of response to ipilimumab observed in advanced melanoma. Shown are the four response patterns observed in advanced melanoma

Standard pattern of response

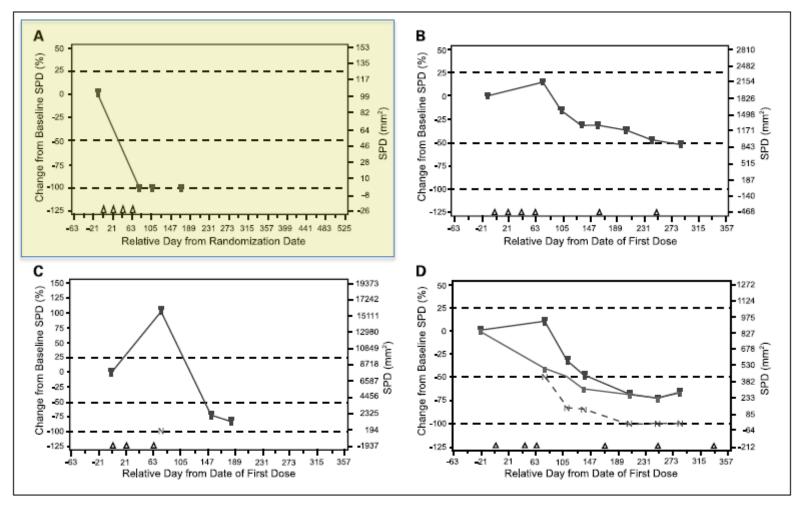
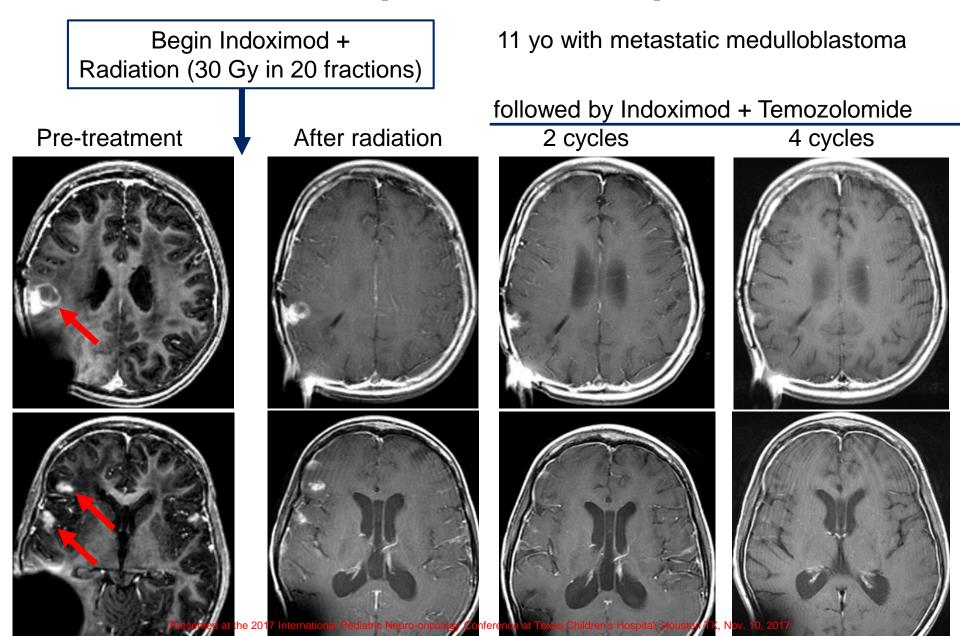



Fig. 1. Patterns of response to ipilimumab observed in advanced melanoma. Shown are the four response patterns observed in advanced melanoma

Standard pattern of response

Standard pattern of response

Begin Indoximod + 11 yo with metastatic medulloblastoma Radiation (30 Gy in 20 fractions) followed by Indoximod + Temozolomide After radiation 2 cycles Pre-treatment 4 cycles

Sustained stabilization of growing disease

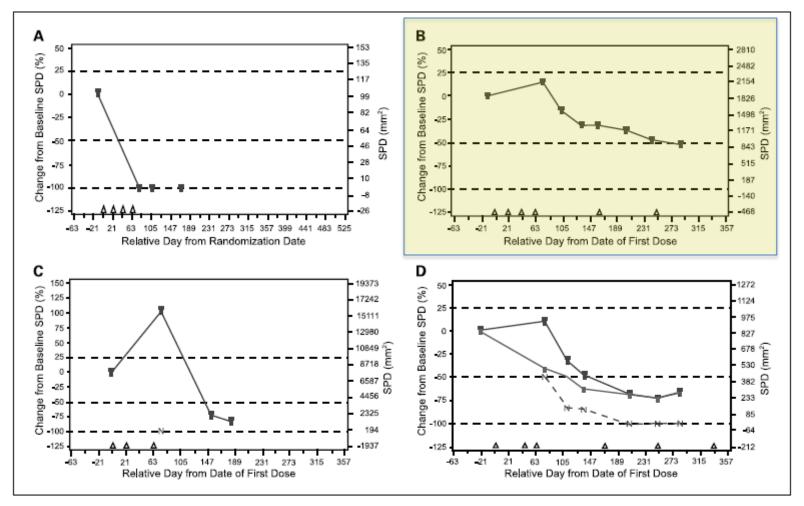


Fig. 1. Patterns of response to ipilimumab observed in advanced melanoma. Shown are the four response patterns observed in advanced melanoma

Sustained stabilization of growing disease

19 yo with metastatic ependymoma Begin Indoximod + Temozolomide 2 cycles 4 cycles 6 cycles Pre-treatment

Sustained stabilization of growing disease

19 yo with metastatic ependymoma Begin Indoximod + Temozolomide 2 cycles 4 cycles 6 cycles Pre-treatment

Presented at the 2017 International Pediatric Neuro-oncology Conference at Texas Children's Hospital, Houston TX, Nov. 10, 2017

Initial tumor enlargement followed by regression

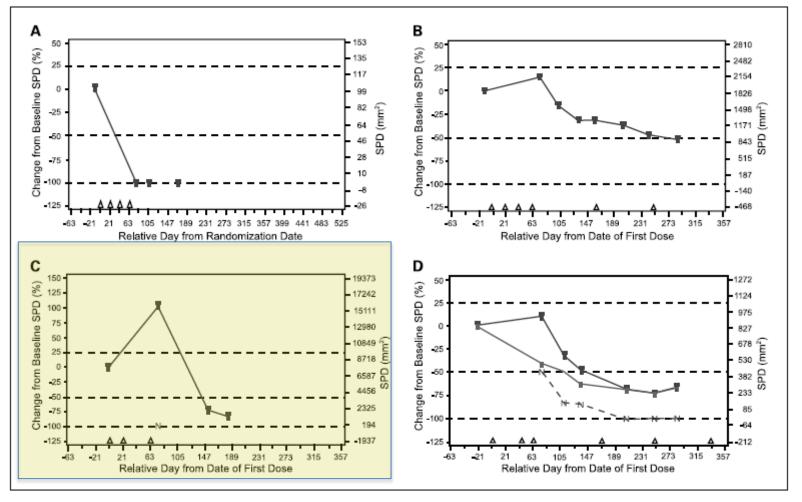
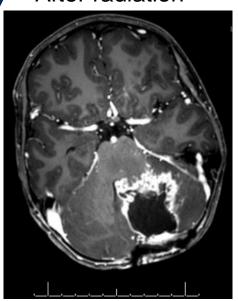


Fig. 1. Patterns of response to ipilimumab observed in advanced melanoma. Shown are the four response patterns observed in advanced melanoma

Initial tumor enlargement followed by regression

Begin Indoximod + Radiation (30 Gy in 20 fractions)


12 yo Li Fraumeni patient with glioblastoma

Pre-treatment

followed by Indoximod + Temozolomide
2 cycles 4 cycles

New metastatic tumor on therapy that later regresses

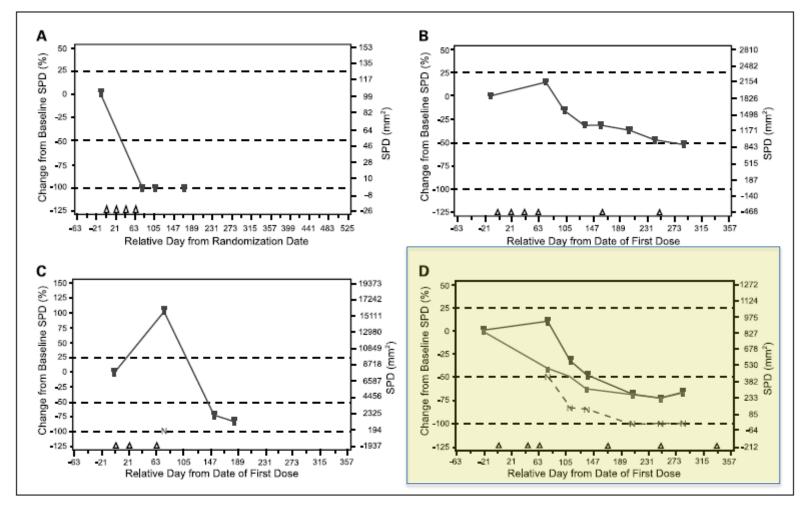


Fig. 1. Patterns of response to ipilimumab observed in advanced melanoma. Shown are the four response patterns observed in advanced melanoma

New metastatic tumor on therapy that later regresses

Begin Indoximod + Temozolomide

14 yo with CSF relapse of medulloblastoma

Pre-treatment

2 cycles

4 cycles

6 cycles

New metastatic tumor on therapy that later regresses

Begin Indoximod + Temozolomide

14 yo with CSF relapse of medulloblastoma

2 cycles

4 cycles

6 cycles

Time To Regimen Failure (TTRF) as an important metric

Delayed cycles and dose-reductions

- Indoximod + radiation:
 - 16 patients received a total of 20 radiation plans
 - All patients completed their radiation plans
 - 3 patients (15%) had delays in starting maintenance Rx:
 - Wound infection (n=1)
 - Urinary tract infection (n=1)
 - Transaminitis (n=1)

Delayed cycles and dose-reductions

- Indoximod + radiation:
 - 16 patients received a total of 20 radiation plans
 - All patients completed their radiation plans
 - 3 patients (15%) had delays in starting maintenance Rx:
 - Wound infection (n=1)
 - Urinary tract infection (n=1)
 - Transaminitis (n=1)
- Indoximod + temozolomide:
 - 26 patients completed 158 temozolomide cycles
 - 17 cycles (11%) were delayed:
 - Thrombocytopenia (n=10)
 - Neutropenia (n=4)
 - Thrombocytopenia with neutropenia (n=1)
 - Hemiparesis (resolved) (n=1)
 - Noncompliance (n=1)
 - _ 11 patients (38%) had dose-reductions in temozolomide

Serious adverse events

15 patients (52%) experienced 21 SAE's

		Grade (n)			Grade (n) Relationship to Indoximod				
Event	1	2	3	4	Unrelated	Unlikely	Possible	Likely	Related
Fever	1	1			1	1			
Febrile neutropenia			1			1			
Lung infection			1			1			
Urinary tract infection		1					1		
Wound infection			1		1				
Anaphylaxis (blood product)			1		1				
Hydrocephalus			1	1	1	1			
Muscle weakness		1	2		2	1			
Seizure		1			1				
Hemiparesis*			1				1		
Spinal cord compression*			1				1		
Encephalopathy*				1	1				
Vomiting		1	2		1	2			
Hyponatremia				1		11			
Adrenal insufficiency				1		1			

*resolved

Quality of Life

Conclusions

- First empiric evidence that adding immunotherapy may have a significant dose-sparing effect on highly toxic conventional therapy
- Indoximod is well tolerated at the highest dose-level studied
 - ... And does not compromise the ability to deliver the backbone therapy (radiation / temozolomide)

Future Directions

- Continue to enroll expansion cohorts
 - Group 2 open for enrollment using indoximod at DL3
 - 3-4 patients per month
- Move to front-line therapy for DIPG
 - First 2 patients have enrolled
- Phase 2 trial to formally test the radiation dosesparing hypothesis (planned for 2018 / 2019)
 - Plan radio-immunotherapy using IDO-blockade for all enrolled patients (unless contraindicated)
 - Test the hypothesis that low-dose radiation plans (≤ 30 Gy)
 will be efficacious when combined with IDO-blockade
 - Currently only 20%-25% would qualify for re-irradiation, and at much higher doses

Future Directions 9 yo with newly diagnosed DIPG

Acknowledgements

Augusta University

- David H. Munn
- William Martin
- Ahmad Al-Basheer
- Waleed F. Mourad
- Diana Fridlyand
- Rafal Pacholczyk
- Cole A. Giller
- Rebecca Parker
- Ian M. Heger
- Amyn M. Rojiani
- Ravindra B. Kolhe Ramses F. Sadek

Emory University

- Tobey J. MacDonald Bree R. Eaton

Dolly Aguilera

Natia Esiashvili

NewLink Genetics Corp.

- Gene Kennedy
- Amy Bell

Nick Vahanian

- Chris Smith
- Lucy Tenant

Grant Support

- Alex's Lemonade Stand Foundation
- Cannonball Kids' cancer Foundation
- Hyundai Hope on Wheels Foundation
- Press On Foundation / CAM Fund

Collaborators

MD Anderson Cancer Center

David Grosshans

Univ. of Alabama at Birmingham

- Gregory K. Friedman
- John B. Fiveash

Akron Children's Hospital

Michael Kelly

Medical College of Wisconsin

- Selim Firat
- Jeffrey Knipstein

Children's Hospital Colorado

- Nicholas Foreman
- Arthur Liu

Child's Hosp. King's Daughters

Raven M. Cooksey

Hampton Univ. Proton Therapy Inst.

Allan Thornton

