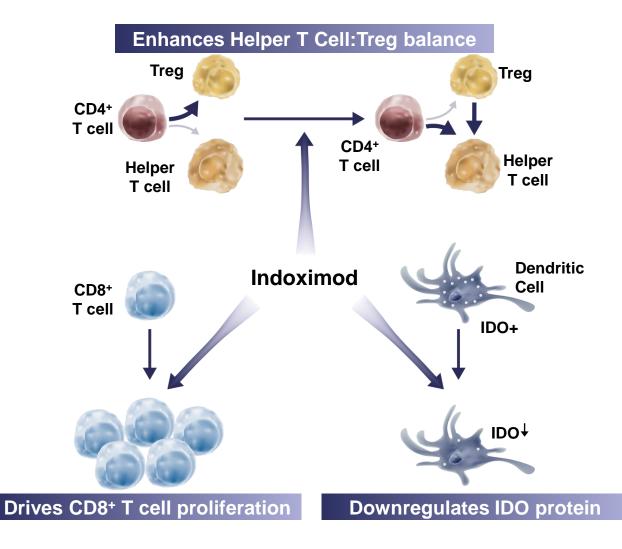


Indoximod Combined with Standard Induction Chemotherapy Is Well Tolerated and Induces a High Rate of Complete Remission with MRD-Negativity in Patients with Newly Diagnosed AML: Results from a Phase 1 Trial

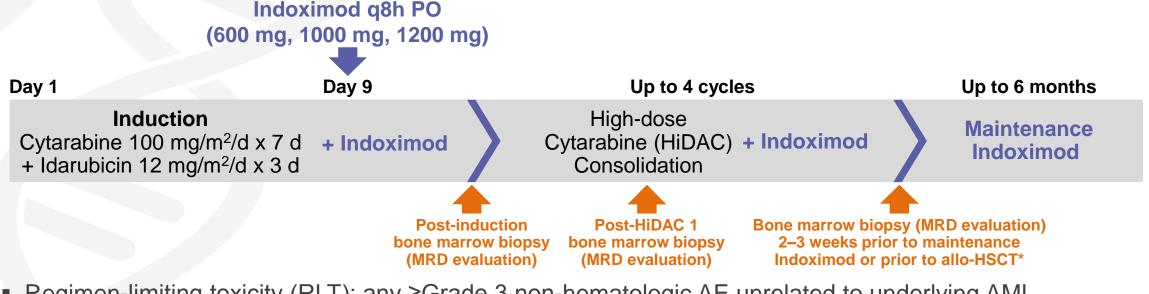
Ashkan Emadi¹, Vu H. Duong¹, Jeremy Pantin², Mohammad Imran¹, Rima Koka³, Zeba Singh³, Edward A. Sausville¹, Jennie Y. Law¹, Seung Tae Lee¹, Huidong Shi⁴, Ravindra Kolhe², Maria R. Baer¹, Michael R. Loken⁵, Eugene P. Kennedy⁶, Charles Link⁶, David H. Munn⁴

¹University of Maryland, School of Medicine, Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; ²Augusta University, Augusta, GA; ³Department of Pathology, University of Maryland School of Medicine, Baltimore, MD; ⁴Georgia Cancer Center and Department of Pediatrics, Medical College of Georgia, Augusta, GA; ⁵Hematologics Inc, Seattle, WA; ⁶NewLink Genetics Corporation, Ames, IA


Cautionary Note Regarding Forward-Looking Statements

This presentation contains forward-looking statements of NewLink Genetics that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation are forwardlooking statements, within the meaning of The Private Securities Litigation Reform Act of 1995. The words "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "target," "potential," "will," "could," "should," "seek" or the negative of these terms or other similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. These forward-looking statements include, among others, statements about NewLink Genetics' financial guidance; results of its clinical trials for product candidates; its timing of release of data from ongoing clinical studies; its plans related to execution of clinical trials; plans related to moving additional indications into clinical development; NewLink Genetics' future financial performance, results of operations, cash position and sufficiency of capital resources to fund its operating requirements; the effects of its organizational realignment, and any other statements other than statements of historical fact. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements that NewLink Genetics makes due to a number of important factors, including those risks discussed in "Risk Factors" and elsewhere in NewLink Genetics' Annual Report on Form 10-K for the year ended December 31, 2017 and other reports filed with the U.S. Securities and Exchange Commission (SEC). The forward-looking statements in this presentation represent NewLink Genetics' views as of the date of this presentation. NewLink Genetics anticipates that subsequent events and developments will cause its views to change. However, while it may elect to update these forward-looking statements at some point in the future, it specifically disclaims any obligation to do so. You should, therefore, not rely on these forward-looking statements as representing NewLink Genetics' views as of any date subsequent to the date of this presentation.

Background


- Indoximod is an orally administered, small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of low tryptophan and high kynurenine that result from IDO activity
- Indoximod has immunostimulatory effects mainly by:
 - reversing the effects of low tryptophan by increasing proliferation of effector CD8+ T cells
 - directly reprogramming T regulatory cells into helper T cells
 - downregulating IDO expression in dendritic cells

Study Objectives and Design

- Primary objective: To assess the safety and preliminary efficacy of indoximod in combination with standard induction chemotherapy in adult patients with newly diagnosed AML
- Key eligibility: ≥18 years, confirmed diagnosis of AML, ECOG PS ≤2
- Open-label, multicenter Phase 1 study, 3+3 design

- Regimen-limiting toxicity (RLT): any ≥Grade 3 non-hematologic AE unrelated to underlying AML, cytarabine or idarubicin
- Indoximod is discontinued 3–4 weeks before allo-HSCT and not resumed post-allo-HSCT

*Patients may undergo allo-HSCT post consolidation at discretion of MD.

Patient Disposition

57 subjects screened

38 subjects received 7+3 induction

5 never received indoximod

- 1 APL
- l withdrew consent
- 1 physician discretion
- 1 inability to swallow
- (GI myeloid sarcoma)
- 1 septic shock prior to indoximod

33 subjects received at least <u>1</u> dose of indoximod (ITT Population)

8 took less than 80% of scheduled indoximod (4 weeks post-induction 1)

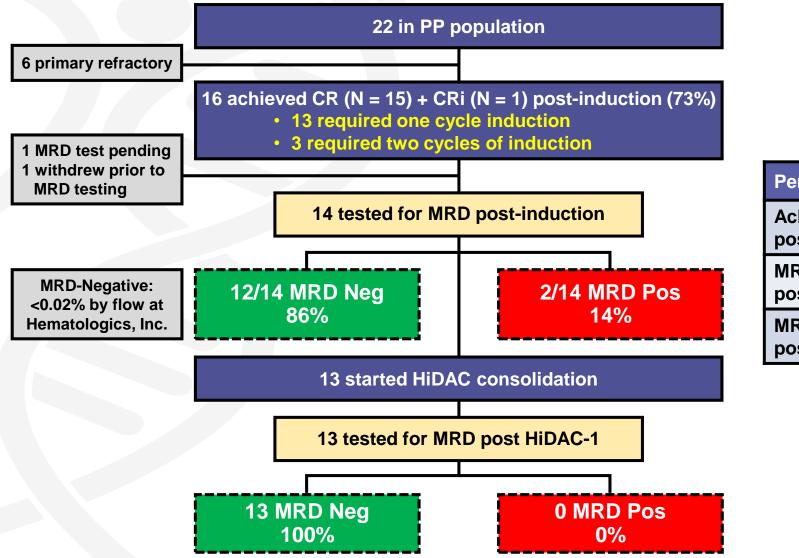
- 2 inability to swallow
- 1 physician discretion
- 3 withdrew consent
- 1 disease progression intubated due to sepsis

3 patients remain on induction treatment

22 subjects received ≥80% of scheduled indoximod (Per Protocol Population)

Baseline demographics and disease characteristics (N = 33)

Age		Mutational panel, n	
Median years (range)	54 (18–72)	FLT3-ITD	3
Sex, n (%)		FLT3-TKD	4
Male	22 (67%)	NPM1	10
Race, n (%)			
White	26 (79%)	DNMT3A	7
African American	4 (12%)	IDH1/IDH2	7
Asian	3 (9%)	NRAS/KRAS	12
ECOG performance n (%)		RUNX1/ASXL1	8
0	22 (67%)	TP53	7
1	8 (24%)	Baseline CBC	
2	3 (9%)	White cell count (x10 ³ / μ L), median 6.95 (0.7–65	
ELN risk classification, n (%)			· · · ·
Favorable	13 (39%)	Absolute neutrophil count (k/µL), median 1.38 (0–17.	
Intermediate	1 (3%)	Hemoglobin (g/dL), median 8.3 (6.4–12.2)	
Adverse	19 (58%)	Platelet count (x10 ⁶ /µL), median 49 (11–160)	


Adverse Events

Grade ≥3 AE (occurring in ≥9%, regardless of attribution)	N = 33 (%)		
Hematologic			
Febrile neutropenia	27 (82%)		
Anemia	4 (12%)		
Thrombocytopenia	3 (9%)		
Non-hematologic			
Hypoxia	5 (15%)		
Hypotension	3 (9%)		
Pneumonia	3 (9%)		

- Hematologic toxicities, in line with expected disease and chemotherapy related toxicities, were the most frequently reported adverse events
- 94% of participants experienced at least one grade ≥3 adverse event
- Three participants experienced fatal adverse events during the study—all deemed unrelated or unlikely related to indoximod by the treating MD
- No regimen limiting toxicities were observed when indoximod was combined with 7+3 induction and HiDAC consolidation chemotherapy in patients with newly diagnosed AML
- The RP2D of indoximod was determined to be 1200 mg q8h PO in combination with 7+3 induction and HiDAC consolidation chemotherapy

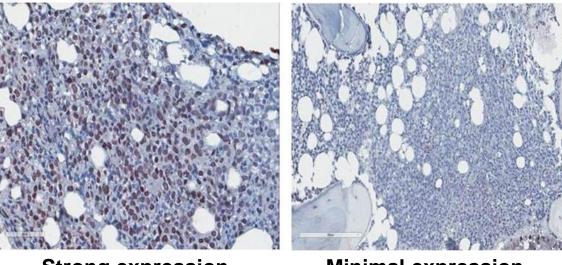
Clinical Activity (Per Protocol population, N = 22)

Results Summary

Per protocol population	N=22	
Achieved CR/CRi post-induction	16/22 (73%)	
MRD negative post-induction	12/14 (86%)	
MRD negative post-consolidation	13/13 (100%)	

MRD in AML post-induction—Literature review

	Newly Dx AML pts (n)	MRD Methodology	CR rate, n (%)	Post Induction MRD-Neg in pts achieved CR, n (%)	Commentary
Buccisano 2006¹	135	MRD by flow (<0.035%)	100/135 (83%)	35/100 (35%)	
Chen 2015 ²	165	MRD by flow	133/165 (81%)	112/133 (84%)	heterogenous chemotherapy regimens (high intensity, standard, low intensity)
Jongen- Lavrencic 2018 ³	340	Next-generation sequencing (MRD by flow as comparison)	Not reported	269/340 (79%)	MRD negative rate <u>after two</u> cycles of induction
Freeman 2018 ⁴	1443	MRD by flow (<0.02%–0.05%)	1023/1443 (71%)	446/1023 (44%)	NPM1-mutated pts excluded, younger patients (<60)


 Currently collecting more contemporaneous multi-institutional dataset to optimize comparison of individual patient characteristics

^{1.} Buccisano F, et al. Leukemia 2006:20:1783-9; 2. Chen X, et al. J Clin Oncol 2015:33:1258-64; 3. Jongen-Lavrencic M, et al. N Engl J Med 2018:378:1189-99; 4. Freeman SD, et al. J Clin Oncol 2018:36:1486-97.

IDO expression in initial diagnostic bone marrow

Strong expression

Minimal expression

- Published data predict a higher IDO score is associated with more refractory disease and greater early mortality¹
- I7 patients had diagnostic marrow biopsies available for IDO staining
- All patients expressed IDO in bone marrow as determined by IHC (composite score) and mRNA
- Due to small sample size, there is not yet statistical correlation between IDO expression and clinical outcome
- 1. Mangaonkar A, et al. Sci Rep 2017;7:12892.

Conclusions

- Indoximod in combination with standard 7+3 chemotherapy was well tolerated and the overall adverse event profile observed in this small sample size was consistent with the profile of 7+3 chemotherapy alone
- No regimen limiting toxicities were observed and the RP2D of indoximod was determined to be 1200 mg q8h PO in combination with 7+3 induction therapy
- Evidence of clinical activity was observed as supported by a post induction MRD negativity (<0.02% by flow) rate of 86% and post-HiDAC1 MRD negativity of 100%
- Given the well characterized role of IDO as a marker of poor prognosis in AML, this study supports targeting the IDO pathway as a potentially beneficial approach in frontline AML