

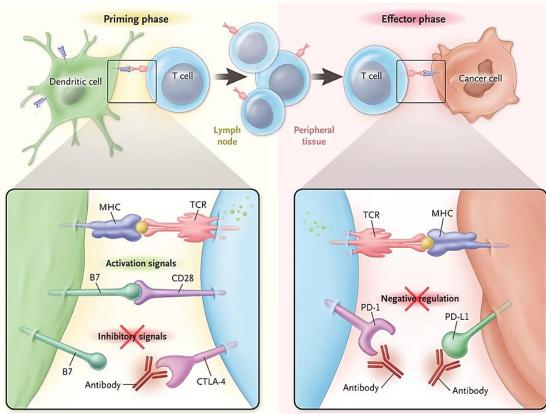
Combined inhibition of the IDO and PD-1 pathways improves the response rate for patients with advanced melanoma

Yousef Zakharia, MD University of Iowa, Holden Comprehensive Cancer Center Iowa City, IA, USA

CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference Mainz, Germany 09/09/2017

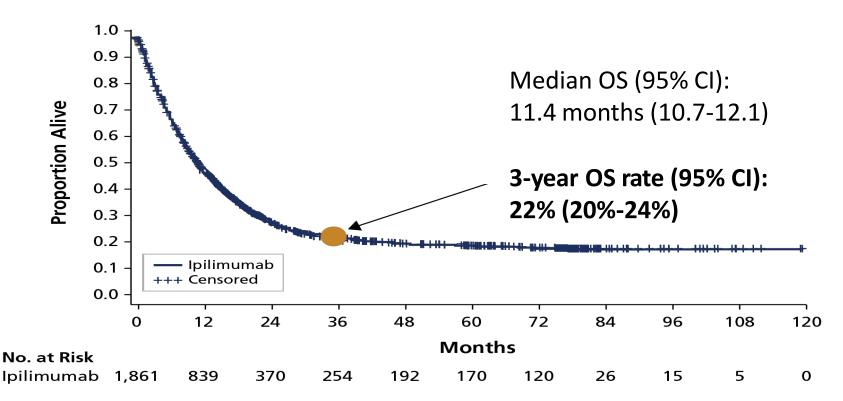
Disclosure Information

I have the following financial relationships to disclose:


• Advisory Board: Amgen, Roche Diagnostics, Novartis, Eisai, Castle Bioscience

 Grant/research support from: The presenter's institution received research support from NewLink Genetics for the purpose of this study

I will be discussing the use of the investigational agent indoximod.


T-Cell Activation, Proliferation, and Function Controlled by Multiple Agonist and Antagonist Signals

The CTLA-4 Experience

Primary Analysis of Pooled OS Data on Ipilimumab in 1,861 Patients¹

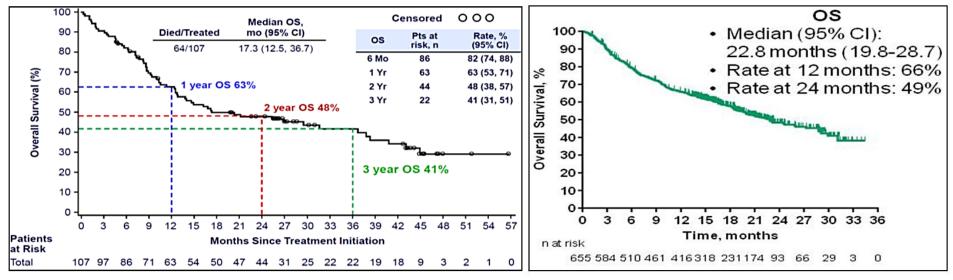
CTLA-4, cytotoxic T-lymphocyte associated protein 4; OS, overall survival; CI, confidence interval.

¹Schadendorf D, et al. Presented at: European Cancer Congress; September 27-October 1, 2013; Amsterdam, Netherlands. Abstract 24.

IY OF IOWA

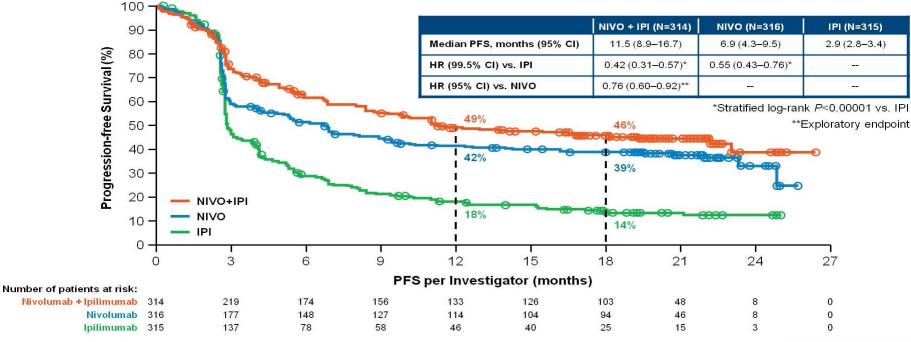
OMPREHENSIVE

University of Iowa Health Care



Anti–PD-1 Antibodies From Phase 1 Studies in Melanoma

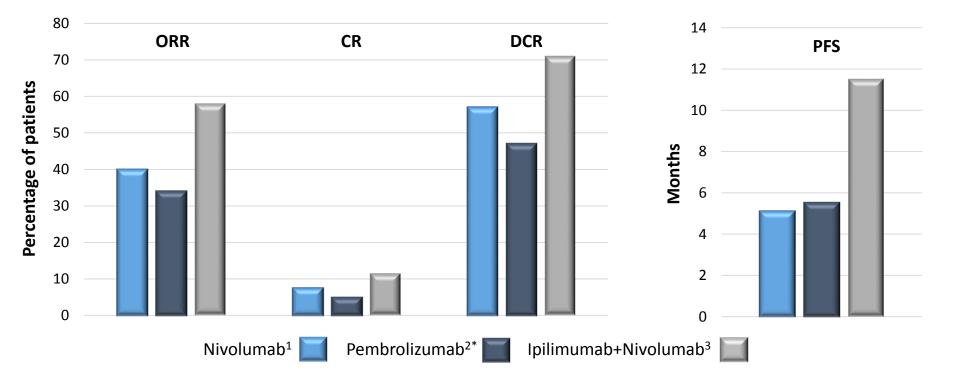
Nivolumab¹


PD-1, programmed cell death protein 1; OS, overall survival; CI, confidence interval.

¹Hodi FS, et al. Presented at: ASCO Annual Meeting; May 30-June 3, 2014; Chicago, Illinois, USA. Abstract 9002.

²Daud A, et al. Presented at: ASCO Annual Meeting; May 29-June 2, 2015; Chicago, Illinois, USA. Abstract 9005.

Progression-Free Survival With Nivolumab + Ipilimumab Intent-to-Treat Population in Melanoma



Database lock Nov 2015

PFS, progression-free survival; CI, confidence interval; HR, hazard ratio.

Wolchok JD, et al. Presented at: ASCO Annual Meeting; June 3-7, 2016; Chicago, Illinois, USA. Abstract 9505.

Currently Approved Checkpoint Therapy Efficacy Results *Substantial Remaining Unmet Need in Metastatic Melanoma*

^{*}Data are for Q2W regimen.

ORR, objective response rate; CR, complete response; DCR, disease control rate; PFS, progression-free survival.

¹Robert C, et al. *N Engl J Med*. 2015;372(4):320-330; ²Robert C, et al. *N Engl J Med*. 2015;372(26):2521-2532; ³Larkin J, et al. *N Engl J Med*. 2015;373(1):23-34.

Comprehensive

University of Iowa Health Care

Safety Summary

Nivolumab + Ipilimumab in Melanoma

 Updated safety information with 9 additional months of follow-up were consistent with the initial report

	NIVO+IPI (N=313)		NIVO (N=313)		IPI (N=311)	
Patients reporting event, %	Any Grade	Grade 3-4	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Treatment-related adverse event (AE)	95.8	56.5	84.0	19.8	85.9	27.0
Treatment-related AE leading to discontinuation	38.7	30.7	10.5	7.3	15.4	13.5
Treatment-related death*	0		0.3		0.3	

 68.8% of patients who discontinued nivolumab + ipilimumab due to treatment-related AEs achieved a response

AE, adverse event.

*One reported in the nivolumab group (neutropenia) and one in the ipilimumab group (colon perforation).

Wolchok JD, et al. Presented at: 2016 ASCO Annual Meeting, June 3-7, 2016; Chicago, Illinois, USA. Abstract 9505.

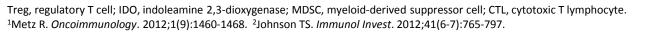
Safety Summary

Nivolumab + Ipilimumab in Melanoma

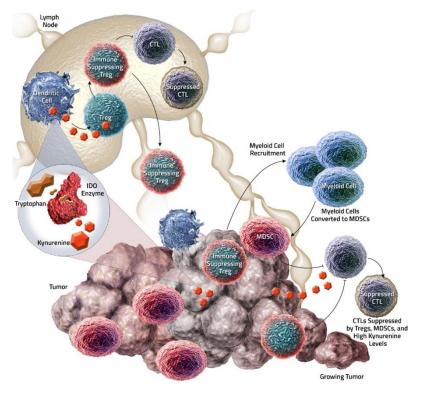
 Updated safety information with 9 additional months of follow-up were consistent with the initial report

	NIVO+IPI (N=313)		NIVO (N=313)		IPI (N=311)	
Patients reporting event, %	Any Grade	Grade 3-4	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Treatment-related adverse event (AE)	95.8	56.5	84.0	19.8	85.9	27.0
Treatment-related AE leading to discontinuation	38.7	30.7	10.5	7.3	15.4	13.5
Treatment-related death*	0		0.3		0.3	

 68.8% of patients who discontinued nivolumab + ipilimumab due to treatment-related AEs achieved a response

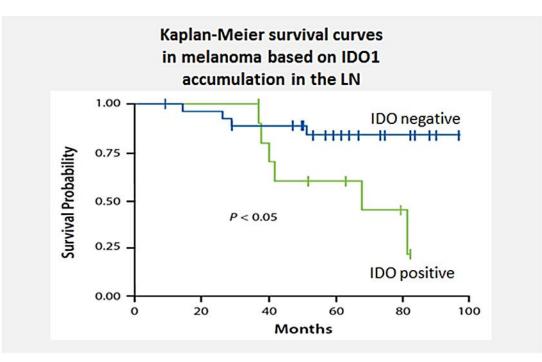

AE, adverse event.

*One reported in the nivolumab group (neutropenia) and one in the ipilimumab group (colon perforation).


Wolchok JD, et al. Presented at: 2016 ASCO Annual Meeting, June 3-7, 2016; Chicago, Illinois, USA. Abstract 9505.

IDO Pathway and Cancer Key Immuno-Oncology Target

- IDO (indoleamine 2,3-dioxygenase): intracellular enzyme that regulates immune response by degrading tryptophan to kynurenine¹
- IDO pathway activity results in a shift of the ratio of tryptophan (↓) to kynurenine (↑)¹
- This shift in ratio signals a suppressive phenotype rather than an activated antitumor phenotype¹
- Tumors hijack the IDO pathway, a normal part of the immune system, to facilitate immune escape²



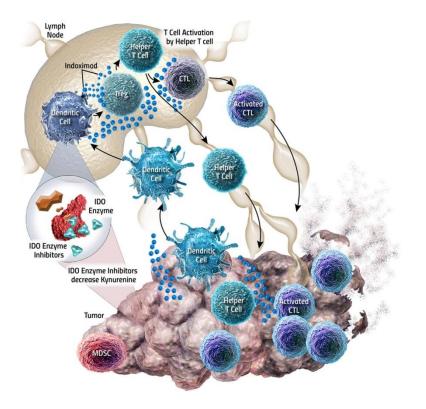
IDO1 Expression in Various Tumor Types

Associated With Poor Patient Outcome

- IDO1 is highly expressed in multiple tumor types
 - Melanoma
 - NSCLC
 - Ovarian cancer
 - Pancreatic cancer
 - Colorectal cancer
 - Glioblastoma
 - Squamous cell carcinoma
 - Endometrial carcinoma
 - DLBCL
 - RCC
 - TCC
 - TNBC

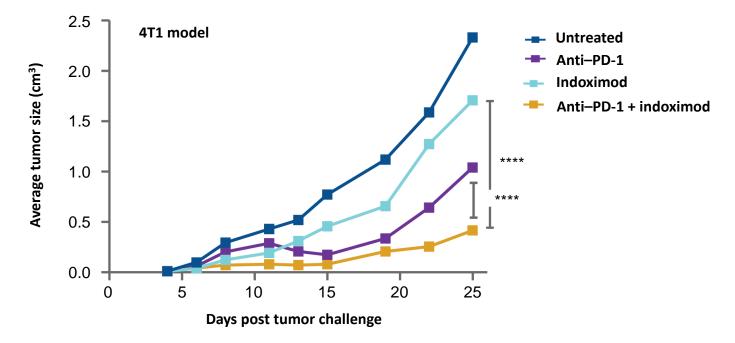
IDO, indoleamine 2,3-dioxygenase; LN, lymph node; NSCLC, non-small cell lung cancer; DLBCL, diffuse large B-cell lymphoma; RCC, renal cell carcinoma; TCC, transitional cell carcinoma; TNBC, triple-negative breast cancer.

Munn DH, et al. J Clin Invest. 2004;114(2):280-290.


Targeting the IDO Pathway

Two Distinct Strategies for Inhibiting the IDO Pathway

Indoximod


- Acts directly on immune cells to reverse
 IDO pathway-mediated suppression
- Epacadostat, navoximod, and BMS-986205
 - Direct IDO enzymatic inhibitors, block tryptophan metabolism¹⁻³
- Available clinical data indicate similar activity with both approaches

Indoximod Plus Anti-PD-1 Synergistic Activity in Preclinical Model

These data provide the scientific basis for the current trial design

PD-1, programmed cell death protein 1. Courtesy to Holmgaard RB. January 13, 2014.

RT, radiation therapy; ECOG, Eastern Cooperative Oncology Group; PO, orally; BID, twice a day; Q8W, every 8 weeks.

Phase 2 Study Design (NLG2103)

Indoximod Plus Checkpoint Inhibitors in Advanced Melanoma

Phase 2 study

Indoximod + nivolumab

Disease progression

Indoximod + ipilimumab

- Open-label, single-arm study
- Primary endpoint: objective response rate
- Key eligibility criteria
 - Unresectable stage III or IV advanced melanoma
 - No systemic treatment, including RT, in the previous 28 days

Indoximod +

ipilimumab

Indoximod +

nivolumab or

pembrolizumab

ECOG performance status ≤2

- Indoximod 1200 mg PO BID + approved standard of care checkpoint inhibitors
- Treatment until toxicity or disease progression
- Imaging at Week 12, then Q8W


Indoximod +

pembrolizumab

Indoximod +

ipilimumab

 Change to second checkpoint allowed at first progression, indoximod continues

Phase 2 Results in Advanced Melanoma Indoximod Plus Pembrolizumab

- Interim Phase 2 results were presented at AACR Plenary Session 2017¹
 - Encouraging response rates observed
 - Treatment regimen was well tolerated
- Updated Phase 2 efficacy results are presented here
 - Longer term follow up period
 - Continued improvement over time observed
 - Treatment remains well tolerated

Baseline Demographic and Clinical Characteristics

Indoximod Plus Pembrolizumab for Advanced Melanoma

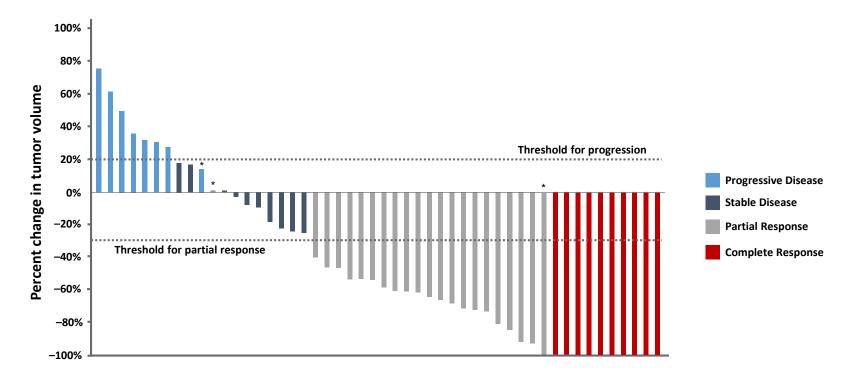
Characteristic	n = 51*	Characteristic	n = 5
Median age (range), y	62.9 (27-88)	ECOG PS, n (%)	
Male, n (%)	34 (67)	0	38 (7
Race/ethnicity, n (%)		1	13 (2
White, non-Hispanic ⁺	50 (98)	Primary site, n (%)	
LDH above ULN, n (%)	12 (24)	Cutaneous	40 (7
Disease stage, n (%)		Mucosal or primary unknown	11 (2
III	8 (16)	Prior therapy, n (%)	
IV	43 (84)	Radiation	9 (18
M1a	9 (18)	Systemic therapy	14 (2
M1b	13 (25)	None	28 (5
M1c	21 (41)		

LDH, lactate dehydrogenase; ULN, upper limit of normal; ECOG PS, Eastern Cooperative Oncology Group performance status.

*Excludes uveal melanoma patients.

[†]One patient declined to answer.

Update on Response*

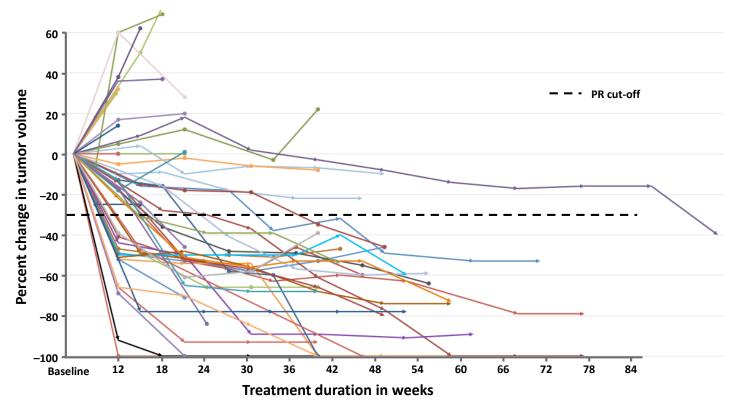


Indoximod Plus Pembrolizumab for Advanced Melanoma

n = 51	n (%)
ORR	31 (61)
CR	10 (20)
PR	21 (41)
SD	10 (20)
DCR	41 (80)
PD	10 (20)

ORR, objective response rate; CR, complete response; PR, partial response; SD, stable disease; DCR, disease control rate; PD, progressive disease.

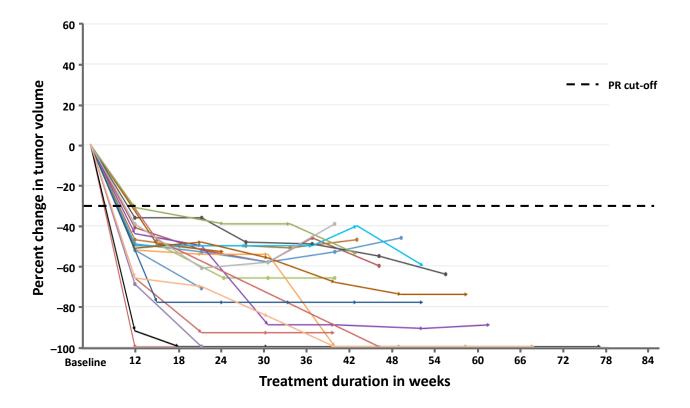
Best Response by Patient With Advanced Melanoma



*Patients that progressed due to new non-target lesions.

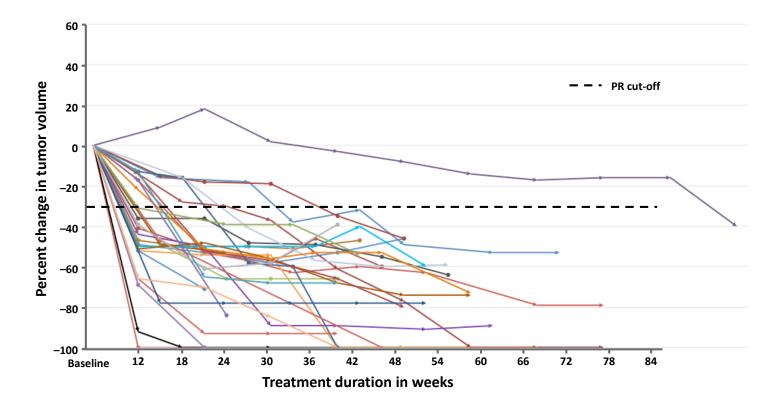
Note: 1 patient was unevaluable for response due to pleural effusion/collapsed left lung; the patient progressed based on several new non-target lesions.

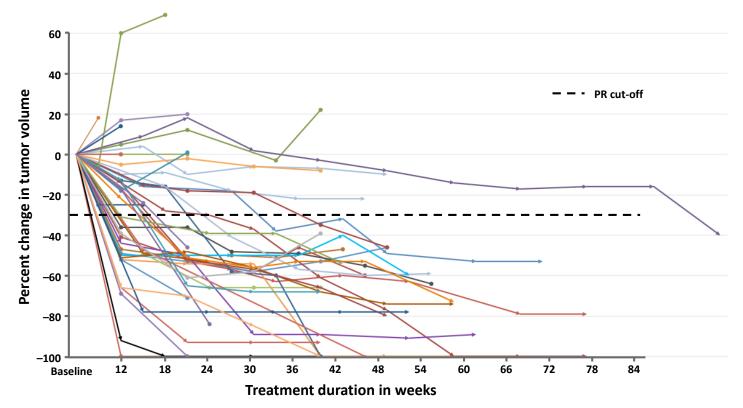
Change in Tumor Volume Over Time Durable and Ongoing Responses



PR, partial response.

Note: 1 patient was unevaluable for response due to pleural effusion/collapsed left lung; the patient progressed based on several new non-target lesions at Week 13.

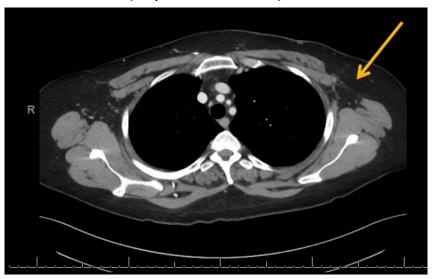

Change in Tumor Volume Over Time Early Partial and Complete Responses at 12 Weeks


Change in Tumor Volume Over Time Delayed Responses Observed in Some Patients

Change in Tumor Volume Over Time Extended Clinical Benefit

Dramatic Responses in Advanced Melanoma Indoximod Plus Pembrolizumab

Before treatment (October 2015)


Dramatic Responses in Advanced Melanoma Indoximod Plus Pembrolizumab

Before treatment (October 2015)

After treatment (September 2017)

Progression-Free Survival in Advanced Melanoma

Improvement on Current Standard of Care

	All patients (n = 51)
Kaplan Meier PFS (months)	12.9
6-month PFS rate	71%
12-month PFS rate	56%

Most Commonly Observed Adverse Events*

Generally Well Tolerated With Limited Grade 3 and 1 Grade 4⁺ Adverse Event

AE, n (%) [‡] n = 60 [§]	Any grade	Grade ≤2	Grade 3	AE, n (%) [‡] n = 60 [§]	Any grade	Grade ≤2	Grade 3
Fatigue	36 (60)	35 (58)	1 (2)	Hyperglycemia	10 (17)	9 (15)	1 (2)
Headache	20 (33)	20 (33)	0 (0)	Dizziness	10 (17)	9 (15)	1 (2)
Nausea	19 (32)	19 (32)	0 (0)	Insomnia	9 (15)	9 (15)	0 (0)
Arthralgia	17 (28)	17 (28)	0 (0)	Dyspnoea	7 (12)	7 (12)	0 (0)
Diarrhea	17 (28)	16 (26)	1 (2)	Hypertension	7 (12)	6 (10)	1 (2)
Pruritus	16 (26)	16 (26)	0 (0)	Back Pain	6 (10)	5 (8)	1 (2)
Rash	14 (24)	13 (22)	1 (2)	Pain in Extremity	6 (10)	5 (8)	1 (2)
Cough	13 (22)	13 (22)	0 (0)	Weight Loss	5 (8)	4 (7)	1 (2)
Anemia	10 (17)	10 (17)	0 (0)	Hypocalcaemia	4 (7)	3 (5)	1 (2)
Constipation	10 (17)	10 (17)	0 (0)	Fall	4 (7)	3 (5)	1 (2)
Vomiting	10 (17)	9 (15)	1 (2)	Hypophosphataemia	3 (5)	1 (2)	2 (3)
Dec. Appetite	10 (17)	9 (15)	1 (2)				

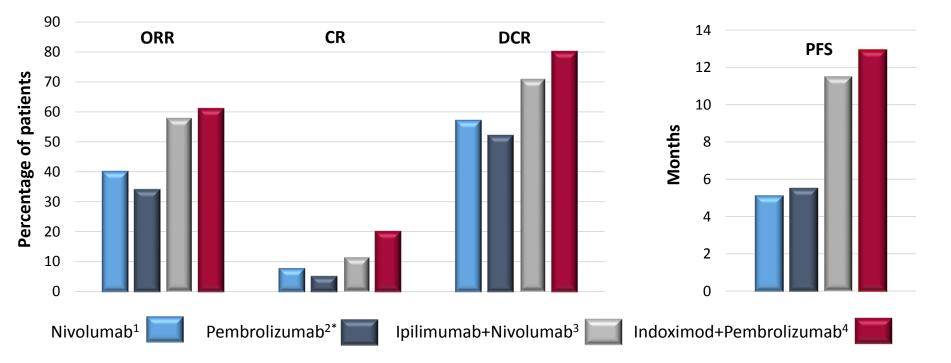
AE, adverse event.

*Regimen consists of full single-agent dose for each agent. [†]One Grade 4 pulmonary embolism not attributed to indoximod occurred.

[†]Occurring in ≥10% of patients or any Grade 3/4, regardless of attribution. §Safety data from 9 uveal melanoma patients included.

Serious Adverse Events

Possible Attribution to Indoximod


- SAEs possibly related to indoximod were reported in 4 patients
 - Grade 3: arthritis, gastritis, hearing impairment
 - Grade 2: interstitial nephritis
- SAEs (arthritis, hearing impairment, rash) led to discontinuation in 3 patients
- No treatment-related deaths were reported

Summary

- Indoximod inhibits the IDO pathway, a key immuno-oncology target
- The combination of indoximod plus pembrolizumab demonstrated an ORR of 61%, a CR rate of 20%, and a DCR of 80% in melanoma patients
- PFS was 12.9 months, and the rate of 12-month PFS was 56% with indoximod plus pembrolizumab
- The combination of indoximod plus pembrolizumab was generally well tolerated and comparable to reported data for pembrolizumab alone

Indoximod Plus PD-1 Response and Survival in Advanced Melanoma Potential to Improve Outcomes Without Added Toxicity of Ipilimumab + Nivolumab

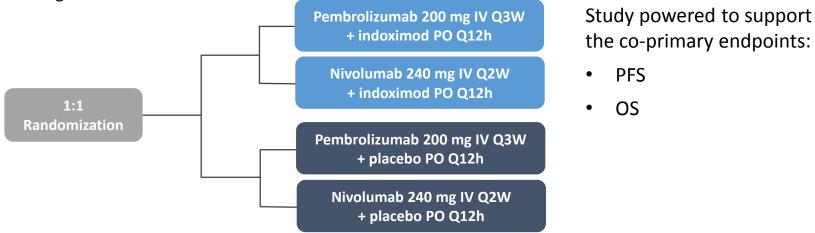
*Data are for Q2W regimen.

PD-1, programmed cell death protein 1; ORR, objective response rate; CR, complete response; DCR, disease control rate; PFS, progression-free survival. ¹Robert C, et al. *N Engl J Med*. 2015;372(4): 320-330. ²Robert C, et al. *N Engl J Med*. 2015;372(26): 2521-2532. ³Larkin J, et al. *N Engl J Med*. 2015;373(1):23-34. ⁴Zakharia Y. Oral presentation at: International Cancer Immunotherapy Conference, September 6-9, 2017; Frankfurt, Germany. Comprehensivi

University of Iowa Health Care

IDO Inhibitors in Clinical Development

Multiple Ongoing Clinical Studies


Agent	Phase	Clinical trials
Epacadostat	3	 Phase 3 epacadostat + pembrolizumab for melanoma (ECHO-301) Phase 2 combination studies for advanced tumors
Indoximod	2	 Phase 2 indoximod + checkpoint inhibitors for melanoma (NLG2103) Phase 2 combination studies for advanced tumors
BMS-986205	1/2	 Phase 1/2 combination studies in advanced tumors
Navoximod (GDC-0919)	1	 Phase 1 navoximod for solid tumors Phase 1 navoximod + atezolizumab
Indoximod prodrug (NLG802)	1	Phase 1 NLG802 for solid tumors
KHK2455	1	- Phase 1 KHK2455 \pm mogamulizumab (anti-CCR4) for solid tumors
PF-06840003	1	Phase 1 PF-06840003 for malignant gliomas

Indoximod Plus PD-1 Inhibitors Phase 3 Pivotal Study Design

Two-arm, randomized, double-blind, placebo-controlled, fixed-dose study

- Randomization stratified by:
 - Choice of checkpoint inhibitor (pembrolizumab or nivolumab)
 - BRAF status (positive/negative)
 - M1c stage at randomization

Acknowledgments

- The patients and their families
- Investigators and collaborators:
 - David Munn
 - Mohammed Milhem
 - Olivier Rixe
 - Samir Khleif
 - Robert McWilliams
 - Montaser Shaheen
 - Joseph Drabick
 - Kenneth Grossmann

- Members of clinical trial teams
- NewLink Genetics for their support of this study