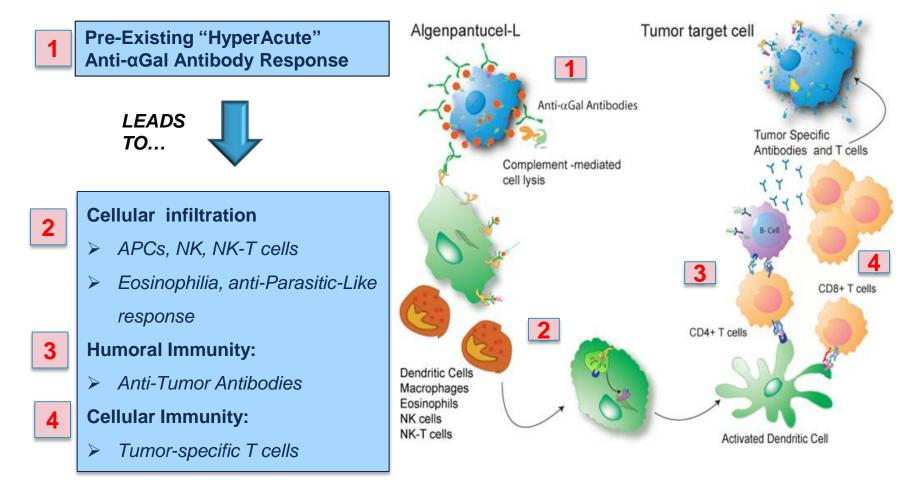
Correlation of Anti-calreticulin Antibody Titers with Improved Overall Survival an a Phase 2 Clinical Trial of Algenpantucel-L Immunotherapy for Patients with Resected Pancreatic Cancer

<u>Gabriela R. Rossi¹, Caio Max S. Rocha Lima², Jeffrey M Hardacre³, Mary Frances Mulcahy⁴, Mark S. Talamonti⁵, Jennifer Carrie Obel⁶, Howard Safran⁷, Heinz-Josef Lenz⁸, E. Gabriela Chiorean⁹, Nicholas N. Vahanian¹, Charles J. Link¹</u>

1. NewLink Genetics, Ames, IA; 2. University of Miami Miller School of Medicine, Miami, FL; 3. University, Chicago, IL; 5. Kellogg Cancer Center NorthShore University Health System, Evanston, IL; 5. North Shore University Health System, Evanston, IL; 6. Brown University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; 8. Indiana University, Indiana, IN

INTRODUCTION

Algenpantucel-L immunotherapy consists of allogeneic pancreatic cancer cells that have been genetically modified to express the carbohydrate $\alpha(1,3)$ Gal, to which humans have an inherent pre-existing immunity. α Gal is primarily responsible for the hyperacute rejection of foreign tissue via this potent immune defense mechanism in humans (1). Algenpantucel-L leverages this hyperacute rejection mechanism to educate the immune system towards components of the patients' own tumor cells (2).


Calreticulin (CALR) is a calcium-binding chaperone protein that functions in the immune response by folding major histocompatibility complex (MHC) class I molecules and influencing antigen presentation to cytotoxic T cells. In pre-clinical models, drugs that induce cell surface CALR confer enhanced anti-tumor response (3-5). Components of algenpantucel-L express cell surface CALR.

This open label, multicenter Phase 2 study (NLG205) is designed to evaluate algenpantucel-L plus standard of care gemcitabine with 5-FU-XRT for resected pancreatic cancer.

ALGENPANTUCEL-L: PROPOSED MOA

- □ Algenpantucel-L consists of tumor-specific human cancer cell lines genetically altered to express a unique carbohydrate, α -gal
- \Box Humans have pre-existing immune response to α -gal
- □ Algenpantucel-L is an allogeneic whole-cell vaccine that utilizes this potent, preexisting immune response against α -gal to educate the immune system and attack cancer

Figure 1: Algenpantucel-L "Hyperacute" Immunotherapy Proposed Mechanism

ALGENPANTUCEL-L: POTENTIAL CRITICAL SUCCESS FACTORS

Formulation

- Metabolically active whole cell vaccine
- Expression of polyvalent tumor antigens
- Presence of tumor antigens shared with patient's cancer
- Not patient specific, adaptable logistics and manufacture

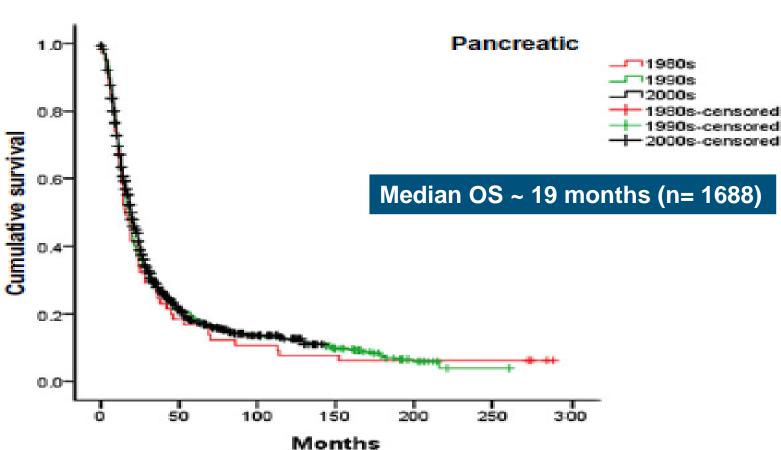
Mechanism of Action

- Relies on pre-existing antibody response
- Complement mediated destruction of vaccine cells, immune-activation and crosspresentation of tumor antigens
- □ Tumor specific CD8+ cytotoxic T cells are generated to recognize patient's own tumor
- □ Tumor specific immune response recognizing shared tumor antigens is generated post vaccination

4th leading cause of
All stages, 5 year sur
Stage IIB, resected, §
Resection rate 20-25
Post resection standa
Chemotherapy
Gemcitabine +

Annual Incidence			
TOTAL	US	EUROPE	JAPAN
117,000	43,000	45,000	29,000

RESECTE	D PANCRE
NLG0205	and RTO


Risk Fac	ctor	Hazard Ratio	<i>p</i> value
Tumor Size			
RTOG9704	< 3 cm	1.21	0.12
	≥ 3 cm		0.12
NLG0205	< 2.5 cm		
NLOUZUJ	< 2.5 cm ≥ 2.5 cm	1.59	0.21
Nodal Status (RTO	G9704)		
,	, N0		
	NU N+	1.53	0.001
Resection Margins	(RTOG9704)		
	R0	1.05	0.74
	R1		

ILG0205	< 2
	≥

High Risk Prognostic Indicators : Positive Nodes (N+) and/or Tumor Size ≥ 2.5 m

Resection Margin is **NOT** an independent prognostic indicator in these data set

RESECTED PANCREATIC CANER: SURVIVAL ANALYSIS BY DECADE

Objective:

single institution over the last three decades Conclusion:

The overall long term outcomes have not improved significantly (8)

PANCREATIC CANCER HISTORIC PERSPECTIVE

cancer death in U.S. (6) rvival < 5% (7) 5 year survival <8% (6) 5% U.S. (6) lard of care py +/- Radiotherapy

+/- 5 FU Concurrent Radiotherapy

EATIC CANCER: ASSESSMENT OF RISKS FACTORS: **G9704**⁽⁹⁾

This study was carried out to determine relative survival rates and trends in outcomes in patients who underwent resection of periampullary adenocarcinomas (PACs) with curative intent at a

NLG0205 PHASE 2 ALGENPANTUCEL-L: STUDY OVERVIEW

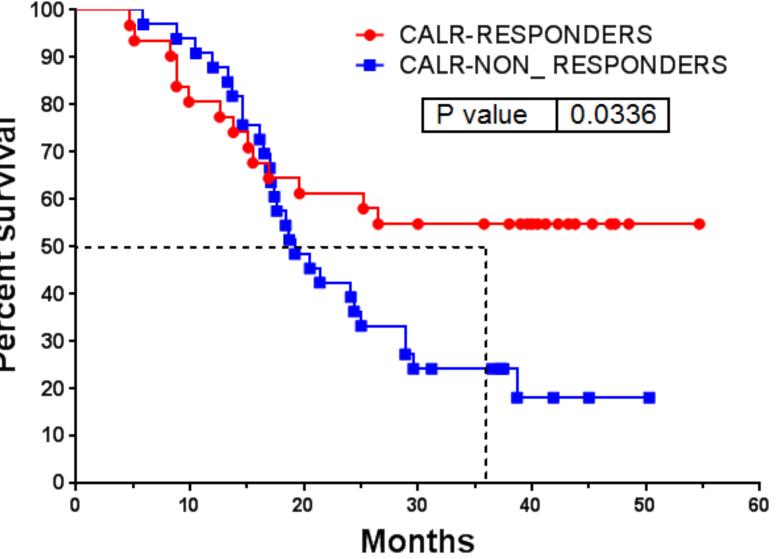
- Design: open-label, 71 patient (n=69 evaluable) multicenter phase 2 study evaluating algenpantucel-L plus standard of care (SOC) gemcitabine with 5-FU-XRT for resected pancreatic cancer
- Endpoints: DFS at 1 year, OS, correlative immunologic analysis
- Eligibility: Post-resection patients with no evidence of residual disease, SOC (gemcitabine+5 FU+Concurrent XRT) + algenpantucel-L
- Treatment Schedule: SOC (gemcitabine with 5-FU-XRT) plus algenpantucel-L, Q2weeks X 6 months
 - > Two dose cohorts: low dose (100 million cells) and high dose (300 million
- Correlative immunologic analysis: Patients with samples before and after immunization were evaluated for the induction of anti- α Gal Ab. anti-CEA Ab. anti-mesothelin Ab and anti-CALR Ab by ELISA

NLG0205 PHASE 2 : PATIENT CHARACTERISTICS

Cha	racteristics	RTOG-9704	NLG0205
Age (Median)		61	62
Gender (Male)		53%	52%
Tumor Location	Head	85%	84%
	Body/Tail	15%	16%
CA19-9 (≥180)	9%	18%	
Tumor Grade (Poor/Und	30%	81%	
Nodal Status	(N+)	68%	81%
Tumor Size (Median)	≥3.0 cm	59 %	66%
High Risk	<i>N</i> + and⁄ or ≥ 2.5 cm	NA	96%
Low Risk	N0 and < 2.5 cm and R0/R1	NA	4%

NLG0205 PHASE 2: RESULTS

- □ Multicenter(16), open label, 2 arm study (n=69 evaluable)
- Adverse Events: grade 1 or 2 skin reactions at injection sites (51%)
 - Grade 3 events possibly attributable to vaccine: • Lymphopenia (6%), skin reaction/pain (3%) and leukopenia/neutropenia (3%)
 - No grade 4 drug related adverse events reported
- Primary endpoint met: 1 year DFS 62%
 - \blacktriangleright DFS: High dose (81%) superior to low dose (52%) p= 0.02
- Secondary endpoints: 1 year Overall Survival (OS) \blacktriangleright OS: High dose (96 %) superior to low dose (79%) p= 0.049
- \Box Previous correlative immunologic studies: increased in anti- α Gal Ab, anti-mesothelin and/or anti-CEA Ab correlated with improved overall survival
 - Multi-parameter analysis indicated that a combination of more than one antibody response correlates with improved survival



NLG0205 PHASE 2 : CORRELATIVE IMMUNOLOGIC STUDIES

Assessed Parameter: Anti-Calreticulin Ab response after immunization

Anti-CALR Ab	Increase Ab	No Increase	Total
Counts	31	33	64
OS (months)	>36	19.2	P< 0.04 (log rank test)
Survival Rate at 36 months	55%	21%	P <0.01 (Fisher's exact test)

Figure 2: Anti-CALR response and Correlation with Survival

- □ Anti-CALR Ab increase ≥20% vs. baseline considered significant
- □ 64 evaluable patients were tested with samples before and after immunization
- □ Increased in anti-CALR correlates with improved survival

NLG0205 PHASE 2 ALGENPANTUCEL-L: CONCLUSIONS

- Elevation of anti-Calreticulin Ab
 - Correlates with improved survival
 - Suggests immune activation by algenpantucel-L
 - Potential predictive value for subsequent treatment decisions
- □ Nodal status and tumor size are important prognostic indicators
- > Resection margin is not an independent prognosis indicator
- □ NLG0205 patient's characteristics: 96% high risk patients represented by equal to or larger than 2.5 cm tumor or N+

#3029

IMPRESS PHASE 3 REGISTRATION TRIAL, NLG0405 (n = 722)

- □ Initiated, May 2010 under SPA with Fast Track and Orphan Drug designation by the
- Open label, 2 arm, 1:1 randomized study enrolling resected pancreatic cancer patients
- \Box SOC +/- algenpantucel-L (SOC = gemcitabine +/- radiation)
- □ Algenpantucel-L: 300 million cells Q2wks X 6 mo \rightarrow Q1m X 6 mo
- Overall Survival is the primary endpoint
- □ Stratified for Nodal Status, Radiotherapy and CA 19-9
- Accrual Status and Endpoints
 - Completed enrollment September 2013 (722 patients)
 - > Early interim analysis (222 events) completed: No unanticipated safety events; DSMC recommendation continue without modification
 - > Second interim analysis at 333 events; Final analysis at 444 events (if required)
 - ➤ Designed to detect ≈20% difference in overall survival at final analysis
- □ ClinicalTrials.gov Identifier: <u>NCT00569387</u>

IMPRESS NLG0405 PHASE 3 : PATIENT CHARACTERISTICS

Characteristics			RTOG-9704	NLG0405
Age (Median)			61	65
Gender (Male)			53%	52%
The second second second		Head	85%	80%
Tumor Location		Body/Tail	15%	20%
CA19-9 (≥180)			9%	9%
Tumor Grade (Poor/Undifferentiated)			30%	35%
Nodal Status	(N+)		68%	70%
Tumor Size (Median)		≥3.0 cm	59 %	55%
High Risk		<i>N</i> + and⁄ or ≥ 2.5 cm	NA	92 %
Low Risk	N0 a	nd < 2.5 cm and R0/R1	NA	8%

IMPRESS Patient Characteristics are consistent with other large US based trials with 92% high risk and 8% low risk patients.

REFERENCES

- 1. Joziasse, D.H. and R. Oriol, Xenotransplantation: the importance of the Galalpha1,3Gal epitope in hyperacute vascular rejection. Biochim Biophys Acta, 1999. 1455(2-3): p. 403-18.
- 2. Rossi, G.R., et al., HyperAcute Vaccines: A Novel Cancer Immunotherapy in Cancer Immunotherapy: Immune Suppression and Tumor Growth, E. Jaffee and G. Prendergast, Editors. 2013, Elsevier: Burlington,
- 3. Obeid, M., et al., Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC
- light-induced apoptosis. Cell Death Differ, 2007. 14(10): p. 1848-50. 4. Obeid, M., et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med, 2007. 13(1): p. 54-61
- 5. Poon, I.K., et al., Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews of Immunology, 2014
- 6. Version, H.P., Pancreatic Cancer Treatment. National Cancer Institute, National Institutes of Health, 2014
- 7. Bilimoria, K.Y., et al., Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer, 2007. 110(4): p. 738-44.
- 8. He, J., et al., 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB : the official journal of the International Hepato Pancreato Biliary Association, 2014. 16(1): p. 83-90.
- 9. Regine, W.F., et al., Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA : the journal of the American Medical Association, 2008. 299(9): p. 1019-26.

50th American Society of Clinical Oncology Annual Meeting; May 30-June 3, 2014; Chicago, IL